TrussFormer: 3D Printing Large Kinetic Structures

We present TrussFormer, an integrated end-to-end system that allows users to 3D print large-scale kinetic structures, i.e., structures that involve motion and deal with dynamic forces. TrussFormer builds on TrussFab, from which it inherits the ability to create static large-scale truss structures from 3D printed connectors and PET bottles. TrussFormer adds movement to these structures by placing linear actuators into them: either manually, wrapped in reusable components called assets, or by demonstrating the intended movement. TrussFormer verifies that the resulting structure is mechanically sound and will withstand the dynamic forces resulting from the motion. To fabricate the design, TrussFormer generates the underlying hinge system that can be printed on standard desktop 3D printers. We demonstrate TrussFormer with several example objects, including a 6 legged walking robot and a 4m tall animatronics dinosaur with 5 degrees of freedom.

[1]  Baining Guo,et al.  Motion-guided mechanical toy modeling , 2012, ACM Trans. Graph..

[2]  Markus H. Gross,et al.  Computational design of actuated deformable characters , 2013, ACM Trans. Graph..

[3]  Arthur C. Sanderson,et al.  Tetrobot: A Modular Approach to Reconfigurable Parallel Robotics , 1997 .

[4]  Tek-Jin Nam,et al.  Mechanism Perfboard: An Augmented Reality Environment for Linkage Mechanism Design and Fabrication , 2018, CHI.

[5]  Imme Ebert-Uphoff,et al.  A novel mechanism for implementing multiple collocated spherical joints , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[6]  Ana Paiva,et al.  The illusion of robotic life: Principles and practices of animation for robots , 2012, 2012 7th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[7]  D. Stewart,et al.  A Platform with Six Degrees of Freedom , 1965 .

[8]  M. M. Mikulas,et al.  Deployable controllable geometry truss beam , 1985 .

[9]  Takeo Igarashi,et al.  Converting 3D furniture models to fabricatable parts and connectors , 2011, SIGGRAPH 2011.

[10]  HeerJeffrey,et al.  D3 Data-Driven Documents , 2011 .

[11]  Wojciech Matusik,et al.  Dynamics-aware numerical coarsening for fabrication design , 2017, ACM Trans. Graph..

[12]  Sylvain Lefebvre,et al.  Make it stand , 2013, ACM Trans. Graph..

[13]  Patrick Baudisch,et al.  Personal Fabrication , 2017, Found. Trends Hum. Comput. Interact..

[14]  Graeme Stemp-Morlock,et al.  Personal fabrication , 2010, Commun. ACM.

[15]  Paul H. Dietz,et al.  The animatronics workshop , 2007, SIGGRAPH '07.

[16]  Eitan Grinspun,et al.  Computational design of linkage-based characters , 2014, ACM Trans. Graph..

[17]  Patrick Baudisch,et al.  Grafter: Remixing 3D-Printed Machines , 2018, CHI.

[18]  D. M. Elzey,et al.  Shape morphing hinged truss structures , 2009 .

[19]  Takeo Igarashi,et al.  Pteromys: interactive design and optimization of free-formed free-flight model airplanes , 2014, ACM Trans. Graph..

[20]  D. Subramanian,et al.  Kinematic synthesis with configuration spaces , 1995 .

[21]  Arthur C. Sanderson,et al.  TETROBOT: a modular approach to parallel robotics , 1997, IEEE Robotics Autom. Mag..

[22]  Takeo Igarashi,et al.  Guided exploration of physically valid shapes for furniture design , 2012, ACM Trans. Graph..

[23]  Bernd Bickel,et al.  Computational design of walking automata , 2015, Symposium on Computer Animation.

[24]  Sean Follmer,et al.  Pneumatic Reel Actuator: Design, modeling, and implementation , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[25]  Layne T. Watson,et al.  Enumeration and Analysis of Variable Geometry Truss Manipulators , 1990 .

[26]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[27]  Yoichi Ochiai,et al.  You as a Puppet: Evaluation of Telepresence User Interface for Puppetry , 2017, UIST.

[28]  Chris Schmandt,et al.  Physical embodiments for mobile communication agents , 2005, UIST '05.

[29]  Stefanie Müller,et al.  WirePrint: 3D printed previews for fast prototyping , 2014, UIST.

[30]  Adam Finkelstein,et al.  Triggering Artwork Swaps for Live Animation , 2017, UIST.

[31]  Mark Yim,et al.  Design of a spherical robot arm with the Spiral Zipper prismatic joint , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[32]  Mark Yim,et al.  Towards a variable topology truss for shoring , 2017, 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI).

[33]  Jie Qi,et al.  Animating paper using shape memory alloys , 2012, CHI.

[34]  Sergiu-Dan Stan,et al.  Virtual Reality Simulation of Tetrobot Parallel Robot for Medical Applications , 2009 .

[35]  Robert Kovacs,et al.  TrussFab: Fabricating Sturdy Large-Scale Structures on Desktop 3D Printers , 2017, CHI.

[36]  Behrokh Khoshnevis,et al.  Automated construction by contour craftingrelated robotics and information technologies , 2004 .

[37]  Boyang Li,et al.  Evaluating CoBlox: A Comparative Study of Robotics Programming Environments for Adult Novices , 2018, CHI.

[38]  Lijie Zhang,et al.  Modified Formula of Mobility for Mechanisms , 2014, ICIRA.

[39]  Scott E. Hudson,et al.  Printing teddy bears: a technique for 3D printing of soft interactive objects , 2014, CHI.

[40]  M. Otaduy,et al.  Design and fabrication of materials with desired deformation behavior , 2010, ACM Trans. Graph..

[41]  Wojciech Matusik,et al.  Computational design of mechanical characters , 2013, ACM Trans. Graph..

[42]  Mark Yim,et al.  Variable topology truss: Design and analysis , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).