Wigner distribution function in nonlinear optics.

Transformation laws for the Wigner distribution function, the radiant intensity, the radiant emittance, and the first- and second-order moments of the Wigner distribution function through an inhomogeneous, Kerr-type medium have been derived as well as for the beam quality factor and the kurtosis parameter. It is shown that the inhomogeneous Kerr-type medium can be approximated from the Wigner-distribution-function transformation-law point of view with a symplectic ABCD matrix with elements depending on the field distribution.

[1]  E Bernabeu,et al.  Nonlinear propagation and transformation of arbitrary laser beams by means of the generalized ABCD formalism. , 1993, Applied optics.

[2]  Daniela Dragoman Higher-order moments of the Wigner distribution function in first-order optical systems , 1994 .

[3]  Rosario Martínez-Herrero,et al.  Parametric characterization of general partially coherent beams propagating through ABCD optical systems , 1991 .

[4]  A. Lohmann,et al.  The wigner distribution function and its optical production , 1980 .

[5]  C. Paré,et al.  Beam propagation in a linear or nonlinear lens-like medium usingABCD ray matrices: the method of moments , 1992 .

[6]  Mj Martin Bastiaans Transport equations for the Wigner distribution function , 1979 .

[7]  Rosario Martínez-Herrero,et al.  On the propagation of the kurtosis parameter of general beams , 1995 .

[8]  Invariance properties of general astigmatic beams through first-order optical systems , 1993 .

[9]  Mj Martin Bastiaans Application of the Wigner distribution function to partially coherent light , 1986 .

[10]  Horst Weber,et al.  Wave Optical Analysis of the Phase Space Analyser , 1992 .

[11]  Mj Martin Bastiaans Wigner distribution function and its application to first-order optics , 1979 .

[12]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[13]  D. Dragoman,et al.  Wigner distribution function for Gaussian-Schell beams in complex matrix optical systems. , 1995, Applied optics.

[14]  A. Lohmann,et al.  Wigner distribution function display of complex 1D signals , 1982 .

[15]  Sandro De Silvestri,et al.  ABCD matrix analysis of propagation of gaussian beams through Kerr media , 1993 .

[16]  A. Ankiewicz,et al.  Geometric optics approach to light acceptance and propagation in graded index fibres , 1977 .

[17]  N. Marcuvitz Quasiparticle view of wave propagation , 1980, Proceedings of the IEEE.

[18]  Rosario Martínez-Herrero,et al.  Beam characterization through active media , 1991 .