Contradiction: When Avoidance Equals Removal - Part I

This paper is the continuation of [1] in this volume. There we present a sceptical semantics which avoids contradiction for extended logic programs plus integrity contraints in the form of denials, based on the notion of optative hypotheses -an abductive approach. In this part we define a program revision method for removing contradiction from contradictory programs under WFSX, based on the notion of revisable hypotheses -a belief revision approach- and show the equivalence between the contradiction avoidance semantics and the WFSX of revised programs obtained by contradiction removal.

[1]  José Júlio Alferes Semantics of logic programs with explicit negation , 1993 .

[2]  José Júlio Alferes,et al.  Diagnosis and Debugging as Contradiction Removal in Logic Programs , 1993, EPIA.

[3]  Jeffrey D. Ullman,et al.  Principles of Database Systems , 1980 .

[4]  Chiaki Sakama,et al.  Extended Well-Founded Semantics for Paraconsistent Logic Programs , 1992, FGCS.

[5]  Kurt Konolige,et al.  An Abductive Framework for General Logic Programs and other Nonmonotonic Systems , 1993, IJCAI.

[6]  Raymond Reiter,et al.  A Theory of Diagnosis from First Principles , 1986, Artif. Intell..

[7]  José Júlio Alferes,et al.  Nonmonotonic Reasoning with Well Founded Semantics. , 1991 .

[8]  Robert A. Kowalski,et al.  Abduction Compared with Negation by Failure , 1989, ICLP.

[9]  David Scott Warren,et al.  A Goal-Oriented Approach to Computing the Well-Founded Semantics , 1993, J. Log. Program..

[10]  Teodor C. Przymusinski Every logic program has a natural stratification and an iterated least fixed point model , 1989, PODS.

[11]  José Júlio Alferes,et al.  Contradiction: When Avoidance Equals Removal - Part II , 1993, ELP.

[12]  Robert A. Kowalski,et al.  Problems and Promises of Computational Logic , 1990 .

[13]  Krzysztof R. Apt,et al.  Logic Programming , 1990, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[14]  Teodor C. Przymusinski Extended Stable Semantics for Normal and Disjunctive Programs , 1990, ICLP.

[15]  José Júlio Alferes,et al.  Well Founded Semantics for Logic Programs with Explicit Negation , 1992, ECAI.

[16]  Michael Gelfond,et al.  Logic Programs with Classical Negation , 1990, ICLP.

[17]  José Júlio Alferes,et al.  Counterfactual Reasoning Based on Revising Assumptions , 1991, ISLP.

[18]  Luís Moniz Pereira,et al.  A Framework for Prolog Debugging , 1988, ICLP/SLP.

[19]  José Júlio Alferes,et al.  Contradiction Removal within Well Founded Semantics , 1991, LPNMR.

[20]  Gerd Wagner,et al.  A Database Needs Two Kinds of Negation , 1991, MFDBS.

[21]  José Júlio Alferes,et al.  Optative Reasoning with Scenario Semantics , 1993, ICLP.

[22]  José Júlio Alferes,et al.  Diagnosis and Debugging as Contradiction Removal , 1993, LPNMR.

[23]  José Júlio Alferes,et al.  The Extended Stable Models of Contradiction Removal Semantics , 1991, EPIA.

[24]  José Júlio Alferes,et al.  Scenario Semantics of Extended Logic Programs , 1993, LPNMR.

[25]  Gerd Wagner Reasoning with Inconsistency in Extended Deductive Databases , 1993, LPNMR.

[26]  Kenneth A. Ross,et al.  The well-founded semantics for general logic programs , 1991, JACM.

[27]  José Júlio Alferes,et al.  On Logic Program Semantics with Two Kinds of Negation , 1992, JICSLP.

[28]  Newton C. A. da Costa,et al.  On the theory of inconsistent formal systems , 1974, Notre Dame J. Formal Log..

[29]  V. S. Subrahmanian,et al.  Paraconsistent Logic Programming , 1987, Theor. Comput. Sci..

[30]  David Poole,et al.  A Logical Framework for Default Reasoning , 1988, Artif. Intell..

[31]  Dirk Vermeir,et al.  A Nonmonotonic Reasoning Formalism Using Implicit Specificity Information , 1993, LPNMR.

[32]  José Júlio Alferes,et al.  Contradiction Removal Semantics with Explicit Negation , 1992, Logic at Work.