Nonlinear robust adaptive trajectory tracking control for spacecraft proximity operations

Six degrees of freedom (6DOF) relative motion trajectory tracking control is studied for a chaser spacecraft with parametric uncertainties and external disturbances to approach a tumbling target in deep space. After modeling the nonlinear and coupled relative motion dynamics in the chaser body-fixed frame, reference trajectories of the relative attitude and relative position are designed, then a 6DOF integrated trajectory tracking controller is developed based on a robust adaptive method. Asymptotic stability of the 6DOF closed-loop system is derived within the Lyapunov framework. The performance of proposed controller is demonstrated through a numerical simulation example.

[1]  Fuyuto Terui Position and attitude control of a spacecraft by sliding mode control , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[2]  N. K. Philip,et al.  Relative position and attitude estimation and control schemes for the final phase of an autonomous docking mission of spacecraft , 2003 .

[3]  Ilya Kolmanovsky,et al.  Model Predictive Control approach for guidance of spacecraft rendezvous and proximity maneuvering , 2012 .

[4]  Kamesh Subbarao,et al.  Nonlinear Control of Motion Synchronization for Satellite Proximity Operations , 2008 .

[5]  Shai Segal,et al.  Stereovision-Based Estimation of Relative Dynamics Between Noncooperative Satellites: Theory and Experiments , 2014, IEEE Transactions on Control Systems Technology.

[6]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[7]  Ou Ma,et al.  Angular velocity tracking for satellite rendezvous and docking , 2011 .

[8]  Son-Goo Kim,et al.  Kalman filtering for relative spacecraft attitude and position estimation , 2005 .

[9]  Guang-Ren Duan,et al.  Robust adaptive integrated translation and rotation finite-time control of a rigid spacecraft with actuator misalignment and unknown mass property , 2014, Int. J. Syst. Sci..

[10]  Sergio Pellegrino,et al.  Trajectory Planning for CubeSat Short-Time-Scale Proximity Operations , 2014 .

[11]  Kamesh Subbarao,et al.  Adaptive Output Feedback Control for Spacecraft Rendezvous and Docking Under Measurement Uncertainty , 2006 .

[12]  John L. Junkins,et al.  Analytical Mechanics of Space Systems, Second Edition: Second Edition , 2009 .

[13]  T. Tsuji,et al.  Terminal sliding mode control of second‐order nonlinear uncertain systems , 1999 .

[14]  Ming Xin,et al.  Integrated nonlinear optimal control of spacecraft in proximity operations , 2010, Int. J. Control.

[15]  Antonio Loría,et al.  Spacecraft relative rotation tracking without angular velocity measurements , 2009, Autom..

[16]  Wei Huo,et al.  Nonlinear Robust Adaptive Control for Spacecraft Proximity Operations , 2014 .

[17]  G.-R. Duan,et al.  Integrated translational and rotational finite-time maneuver of a rigid spacecraft with actuator misalignment , 2012 .

[18]  Takashi Kida,et al.  Nonlinear tracking control of rigid spacecraft under disturbance using PD and PID type ℋ∞ state feedback , 2011, IEEE Conference on Decision and Control and European Control Conference.

[19]  M. Shuster A survey of attitude representation , 1993 .

[20]  Yulin Zhang,et al.  Modeling and Analysis of Relative Hovering Control for Spacecraft , 2014 .

[21]  Ziyang Meng,et al.  Decentralised cooperative attitude tracking using modified Rodriguez parameters based on relative attitude information , 2010, Int. J. Control.

[22]  D. T. Stansbery,et al.  Position and attitude control of a spacecraft using the state-dependent Riccati equation technique , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[23]  M. Xin,et al.  Nonlinear optimal control of spacecraft approaching a tumbling target , 2011 .