Parameters tuning boosts hyperSMURF predictions of rare deleterious non-coding genetic variants
暂无分享,去创建一个
Giorgio Valentini | Giuliano Grossi | Marco Mesiti | Alessandro Petrini | Tiziana Castrignanò | Marco Frasca | Matteo Re | Max Schubach | Peter N. Robinson | G. Valentini | M. Mesiti | P. Robinson | M. Schubach | M. Ré | T. Castrignanò | G. Grossi | M. Frasca | A. Petrini
[1] Nitesh V. Chawla,et al. SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..
[2] J. Shendure,et al. A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.
[3] Paul Flicek,et al. Computational approaches to interpreting genomic sequence variation , 2014, Genome Medicine.
[4] Takaya Saito,et al. The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets , 2015, PloS one.
[5] O. Troyanskaya,et al. Predicting effects of noncoding variants with deep learning–based sequence model , 2015, Nature Methods.
[6] J. Buxbaum,et al. A SPECTRAL APPROACH INTEGRATING FUNCTIONAL GENOMIC ANNOTATIONS FOR CODING AND NONCODING VARIANTS , 2015, Nature Genetics.
[7] Giorgio Valentini,et al. A Whole-Genome Analysis Framework for Effective Identification of Pathogenic Regulatory Variants in Mendelian Disease. , 2016, American journal of human genetics.
[8] Giorgio Valentini,et al. Imbalance-Aware Machine Learning for Predicting Rare and Common Disease-Associated Non-Coding Variants , 2017, Scientific Reports.