A multiple-imputation Metropolis version of the EM algorithm

In this paper we introduce a new stochastic variant of the EM algorithm. The algorithm combines the principle of multiple imputation and the theory of simulated annealing to deal with cases where the E-step and the M-step can be intractable or numerically inefficient. Copyright Biometrika Trust 2003, Oxford University Press.

[1]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[2]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[3]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[4]  D. Rubin,et al.  Multiple Imputation for Nonresponse in Surveys , 1989 .

[5]  G. C. Wei,et al.  A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms , 1990 .

[6]  H. Haario,et al.  Simulated annealing process in general state space , 1991, Advances in Applied Probability.

[7]  J. Kent,et al.  Domains of convergence for the EM algorithm: a cautionary tale in a location estimation problem , 1993 .

[8]  G. Celeux,et al.  Asymptotic properties of a stochastic EM algorithm for estimating mixing proportions , 1993 .

[9]  Xiao-Li Meng,et al.  The EM Algorithm—an Old Folk‐song Sung to a Fast New Tune , 1997 .

[10]  C. McCulloch Maximum Likelihood Algorithms for Generalized Linear Mixed Models , 1997 .

[11]  J. Booth,et al.  Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm , 1999 .

[12]  É. Moulines,et al.  Convergence of a stochastic approximation version of the EM algorithm , 1999 .

[13]  R. Senoussi,et al.  Parametric Estimation of a Boolean Segment Process with Stochastic Restoration Estimation , 2000 .

[14]  Jianfeng Yao On Recursive Estimation in Incomplete Data Models , 2000 .

[15]  S. Nielsen The stochastic EM algorithm: estimation and asymptotic results , 2000 .

[16]  George Casella,et al.  Implementations of the Monte Carlo EM Algorithm , 2001 .