Stability of a finite-length rivulet under partial wetting conditions

We study the stability of a finite-length fluid rivulet at rest on a partially wetting surface. We consider the problem by including the intermolecular force (van der Waals interaction) within the framework of the lubrication approximation. The results are validated by comparison with numerical simulations of the full nonlinear equation. For finite length rivulets, we show that the distance between drops after breakup is very close to the wavelength of maximum growth rate predicted by the linear theory for infinite rivulets. Finally, we compare theoretical and numerical results with reported experimental data.

[1]  Khellil Sefiane,et al.  CONTACT ANGLE, WETTABILITY AND ADHESION, VOL 6 , 2009 .

[2]  L. Kondic,et al.  On the breakup of fluid films of finite and infinite extent , 2007 .

[3]  R. Gratton,et al.  Rupture of a fluid strip under partial wetting conditions , 2007 .

[4]  Ramki Kalyanaraman,et al.  Robust nanopatterning by laser-induced dewetting of metal nanofilms , 2006, Nanotechnology.

[5]  J. Snoeijer Free-surface flows with large slopes: Beyond lubrication theory , 2006, physics/0603265.

[6]  L. Pismen,et al.  Asymptotic theory for a moving droplet driven by a wettability gradient , 2005, physics/0509260.

[7]  Thomas P. Witelski,et al.  Collision versus collapse of droplets in coarsening of dewetting thin films , 2005 .

[8]  Andreas Münch,et al.  Contact-line instability of dewetting thin films , 2005 .

[9]  C. A. Perazzo,et al.  Navier–Stokes solutions for parallel flow in rivulets on an inclined plane , 2004, Journal of Fluid Mechanics.

[10]  Howard A. Stone,et al.  ENGINEERING FLOWS IN SMALL DEVICES , 2004 .

[11]  K. Glasner Spreading of droplets under the influence of intermolecular forces , 2003 .

[12]  Jeffrey M. Davis,et al.  Influence of attractive van der Waals interactions on the optimal excitations in thermocapillary-driven spreading. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Thomas P. Witelski,et al.  Coarsening dynamics of dewetting films. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Ralf Blossey,et al.  Complex dewetting scenarios captured by thin-film models , 2003, Nature materials.

[15]  Lou Kondic,et al.  Computing three-dimensional thin film flows including contact lines , 2002 .

[16]  Andrea L. Bertozzi,et al.  Dewetting films: bifurcations and concentrations , 2001 .

[17]  K. Kemper,et al.  5He+αcluster model of9Bebreakup , 2001 .

[18]  H. Stone,et al.  Microfluidics: Basic issues, applications, and challenges , 2001 .

[19]  L. Schwartz,et al.  Dewetting Patterns in a Drying Liquid Film. , 2001, Journal of colloid and interface science.

[20]  Pomeau.,et al.  Disjoining potential and spreading of thin liquid layers in the diffuse-interface model coupled to hydrodynamics , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  Ivan B. Bazhlekov,et al.  Spreading of a wetting film under the action of van der Waals forces , 2000 .

[22]  L. Schwartz,et al.  On the stability of liquid ridges , 1999, Journal of Fluid Mechanics.

[23]  Bischof,et al.  Spinodal dewetting in liquid crystal and liquid metal films , 1998, Science.

[24]  L. Schwartz,et al.  Simulation of Droplet Motion on Low-Energy and Heterogeneous Surfaces , 1998 .

[25]  S. Bankoff,et al.  Long-scale evolution of thin liquid films , 1997 .

[26]  P. Schweizer,et al.  Liquid film coating : scientific principles and their technological implications , 1997 .

[27]  H. Kheshgi The Fate of Thin Liquid Films after Coating , 1997 .

[28]  F. Brochard-Wyart,et al.  Dynamics of liquid rim instabilities , 1992 .

[29]  G. Homsy,et al.  Viscous flow down a slope in the vicinity of a contact line , 1991 .

[30]  D. Langbein The shape and stability of liquid menisci at solid edges , 1990, Journal of Fluid Mechanics.

[31]  K. Kawasaki,et al.  Morphological stability analysis of partial wetting , 1987 .

[32]  S. H. Davis Moving contact lines and rivulet instabilities. Part 1. The static rivulet , 1980, Journal of Fluid Mechanics.