Gliding Motility Revisited: How Do the Myxobacteria Move without Flagella?

SUMMARY In bacteria, motility is important for a wide variety of biological functions such as virulence, fruiting body formation, and biofilm formation. While most bacteria move by using specialized appendages, usually external or periplasmic flagella, some bacteria use other mechanisms for their movements that are less well characterized. These mechanisms do not always exhibit obvious motility structures. Myxococcus xanthus is a motile bacterium that does not produce flagella but glides slowly over solid surfaces. How M. xanthus moves has remained a puzzle that has challenged microbiologists for over 50 years. Fortunately, recent advances in the analysis of motility mutants, bioinformatics, and protein localization have revealed likely mechanisms for the two M. xanthus motility systems. These results are summarized in this review.

[1]  D. Kaiser,et al.  A link between cell movement and gene expression argues that motility is required for cell-cell signaling during fruiting body development. , 1988, Genes & development.

[2]  Lotte Søgaard-Andersen,et al.  Pattern formation by a cell surface-associated morphogen in Myxococcus xanthus , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[3]  M. Levine,et al.  Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans , 1988, The Journal of experimental medicine.

[4]  L. Shimkets,et al.  Cell surface properties correlated with cohesion in Myxococcus xanthus , 1988, Journal of bacteriology.

[5]  W. Shi,et al.  A new set of chemotaxis homologues is essential for Myxococcus xanthus social motility , 1998, Molecular microbiology.

[6]  B. Bassler,et al.  Quorum sensing: cell-to-cell communication in bacteria. , 2005, Annual review of cell and developmental biology.

[7]  J. Kirby,et al.  Deciphering the hunting strategy of a bacterial wolfpack. , 2009, FEMS microbiology reviews.

[8]  Pascale G. Charest,et al.  Big roles for small GTPases in the control of directed cell movement. , 2007, The Biochemical journal.

[9]  D. Zusman,et al.  Methylation of FrzCD, a methyl-accepting taxis protein of Myxococcus xanthus, is correlated with factors affecting cell behavior , 1992, Journal of bacteriology.

[10]  D. Kaiser,et al.  Polar assembly of the type IV pilus secretin in Myxococcus xanthus , 2006, Molecular microbiology.

[11]  H. Berg,et al.  Gliding motility of Cytophaga sp. strain U67 , 1982, Journal of bacteriology.

[12]  Roy D. Welch,et al.  Pattern formation and traveling waves in myxobacteria: Theory and modeling , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[13]  L. Shimkets,et al.  FibA and PilA act cooperatively during fruiting body formation of Myxococcus xanthus , 2006, Molecular microbiology.

[14]  D. Zusman,et al.  Differential effects of chemoreceptor methylation‐domain mutations on swarming and development in the social bacterium Myxococcus xanthus , 2006, Molecular microbiology.

[15]  H. Reichenbach,et al.  The ecology of the myxobacteria. , 1999, Environmental microbiology.

[16]  D. Zusman,et al.  Cell density regulates cellular reversal frequency in Myxococcus xanthus. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Zhaomin Yang,et al.  Myxococcus xanthus Chemotaxis Homologs DifD and DifG Negatively Regulate Fibril Polysaccharide Production , 2004, Journal of bacteriology.

[18]  T. Mignot,et al.  Two localization motifs mediate polar residence of FrzS during cell movement and reversals of Myxococcus xanthus , 2007, Molecular microbiology.

[19]  W. Shi,et al.  Exopolysaccharide biosynthesis genes required for social motility in Myxococcus xanthus , 2004, Molecular microbiology.

[20]  M. Miyata Centipede and inchworm models to explain Mycoplasma gliding. , 2008, Trends in microbiology.

[21]  D. Zusman,et al.  AsgD, a new two‐component regulator required for A‐signalling and nutrient sensing during early development of Myxococcus xanthus , 1999, Molecular microbiology.

[22]  Roy D. Welch,et al.  Cell behavior in traveling wave patterns of myxobacteria , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[23]  James K Gimzewski,et al.  Nanoscale visualization and characterization of Myxococcus xanthus cells with atomic force microscopy. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  T. Mignot,et al.  Bacterial motility complexes require the actin‐like protein, MreB and the Ras homologue, MglA , 2010, The EMBO journal.

[25]  Dale Kaiser,et al.  Signaling in myxobacteria. , 2004, Annual review of microbiology.

[26]  L. Shimkets Intercellular signaling during fruiting-body development of Myxococcus xanthus. , 1999, Annual review of microbiology.

[27]  D. White,et al.  AglU, a protein required for gliding motility and spore maturation of Myxococcus xanthus, is related to WD‐repeat proteins , 2000, Molecular microbiology.

[28]  J. Kirby,et al.  Chemosensory regulation of developmental gene expression in Myxococcus xanthus , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[29]  L. Shimkets,et al.  Social and developmental biology of the myxobacteria , 1990, Microbiological reviews.

[30]  Hong Sun,et al.  Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[31]  H. Vlamakis,et al.  FrzZ, a dual CheY‐like response regulator, functions as an output for the Frz chemosensory pathway of Myxococcus xanthus , 2007, Molecular microbiology.

[32]  L. Shimkets,et al.  Regulation of cohesion-dependent cell interactions in Myxococcus xanthus , 1993, Journal of bacteriology.

[33]  A. Kuspa,et al.  A-signalling and the cell density requirement for Myxococcus xanthus development , 1992, Journal of bacteriology.

[34]  Wolfgang Baumeister,et al.  The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in cyanobacteria , 1998, Current Biology.

[35]  D. Zusman,et al.  The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[36]  P. Andrews,et al.  Site-specific receptor methylation of FrzCD in Myxococcus xanthus is controlled by a tetra-trico peptide repeat (TPR) containing regulatory domain of the FrzF methyltransferase , 2008, Molecular microbiology.

[37]  M. Dworkin Tactic behavior of Myxococcus xanthus , 1983, Journal of bacteriology.

[38]  M. McBride,et al.  Cytophaga-Flavobacterium Gliding Motility , 2004, Journal of Molecular Microbiology and Biotechnology.

[39]  John R. Kirby,et al.  Chemosensory pathways, motility and development in Myxococcus xanthus , 2007, Nature Reviews Microbiology.

[40]  Erinna F. Lee,et al.  Evidence That Focal Adhesion Complexes Power Bacterial Gliding Motility , 2022 .

[41]  D. Zusman,et al.  Development in Myxococcus xanthus involves differentiation into two cell types, peripheral rods and spores , 1991, Journal of bacteriology.

[42]  D. Kaiser A microbial genetic journey. , 2006, Annual review of microbiology.

[43]  H. Vlamakis,et al.  Analysis of the Frz signal transduction system of Myxococcus xanthus shows the importance of the conserved C‐terminal region of the cytoplasmic chemoreceptor FrzCD in sensing signals , 2004, Molecular microbiology.

[44]  D. Kaiser,et al.  Function of MglA, a 22-kilodalton protein essential for gliding in Myxococcus xanthus , 1991, Journal of bacteriology.

[45]  M. McBride,et al.  SprB Is a Cell Surface Component of the Flavobacterium johnsoniae Gliding Motility Machinery , 2008, Journal of bacteriology.

[46]  Howard C. Berg,et al.  Direct observation of extension and retraction of type IV pili , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[47]  M. Dworkin Biology of the myxobacteria. , 1966, Annual review of microbiology.

[48]  M. Singer,et al.  RasA Is Required for Myxococcus xanthus Development and Social Motility , 2005, Journal of bacteriology.

[49]  A Boyd,et al.  Bacterial chemotaxis. , 1982, Annual review of physiology.

[50]  A. Engel,et al.  Structural Insights into the Secretin PulD and Its Trypsin-resistant Core* , 2005, Journal of Biological Chemistry.

[51]  L. Søgaard-Andersen,et al.  Coupling of protein localization and cell movements by a dynamically localized response regulator in Myxococcus xanthus , 2007, The EMBO journal.

[52]  Alfred E. Brown,et al.  The Myxococcus xanthus wbgB gene encodes a glycosyltransferase homologue required for lipopolysaccharide O-antigen biosynthesis , 2000, Archives of Microbiology.

[53]  D. Kaiser,et al.  C-factor: A cell-cell signaling protein required for fruiting body morphogenesis of M. Xanthus , 1990, Cell.

[54]  G. Oster,et al.  The Motors Powering A-Motility in Myxococcus xanthus Are Distributed along the Cell Body , 2007, Journal of bacteriology.

[55]  B. Maier,et al.  Regulation of the type IV pili molecular machine by dynamic localization of two motor proteins , 2009, Molecular microbiology.

[56]  J. Shaevitz,et al.  Evidence That Focal Adhesion Complexes Power Bacterial Gliding Motility , 2007, Science.

[57]  O. Sliusarenko,et al.  Localization of a bacterial cytoplasmic receptor is dynamic and changes with cell-cell contacts , 2009, Proceedings of the National Academy of Sciences.

[58]  B. Birren,et al.  Mapping of Myxococcus xanthus Social Motility dsp Mutations to the dif Genes , 2002, Journal of bacteriology.

[59]  L. Shimkets,et al.  Identification of a developmental chemoattractant in Myxococcus xanthus through metabolic engineering , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[60]  P. Youderian,et al.  Transposon Insertions of magellan-4 That Impair Social Gliding Motility in Myxococcus xanthus , 2006, Genetics.

[61]  P. Youderian,et al.  Triple Mutants Uncover Three New Genes Required for Social Motility in Myxococcus xanthus , 2007, Genetics.

[62]  D. Zusman,et al.  "Frizzy" genes of Myxococcus xanthus are involved in control of frequency of reversal of gliding motility. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[63]  L. Shimkets,et al.  Proteins Associated with the Myxococcus xanthus Extracellular Matrix , 2007, Journal of bacteriology.

[64]  Social motility in Myxococcus xanthus requires FrzS, a protein with an extensive coiled‐coil domain , 2000, Molecular microbiology.

[65]  D. Zusman,et al.  Chemotaxis plays a role in the social behaviour of Myxococcus xanthus , 1993, Molecular microbiology.

[66]  D. Zusman,et al.  The receiver domain of FrzE, a CheA–CheY fusion protein, regulates the CheA histidine kinase activity and downstream signalling to the A‐ and S‐motility systems of Myxococcus xanthus , 2008, Molecular microbiology.

[67]  T. Mignot,et al.  The elusive engine in Myxococcus xanthus gliding motility , 2007, Cellular and Molecular Life Sciences.

[68]  J. Mattick Type IV pili and twitching motility. , 2002, Annual review of microbiology.

[69]  L. Shimkets,et al.  Myxococcus xanthus dif Genes Are Required for Biogenesis of Cell Surface Fibrils Essential for Social Gliding Motility , 2000, Journal of bacteriology.

[70]  D. Kaiser,et al.  Intercellular C-signaling and the traveling waves of Myxococcus. , 1994, Genes & development.

[71]  M. Dworkin,et al.  Integral proteins of the extracellular matrix fibrils of Myxococcus xanthus , 1994, Journal of bacteriology.

[72]  D. Kaiser,et al.  Markerless deletions of pil genes in Myxococcus xanthus generated by counterselection with the Bacillus subtilis sacB gene , 1996, Journal of bacteriology.

[73]  J. Gimzewski,et al.  Analysis of type IV pilus and its associated motility in Myxococcus xanthus using an antibody reactive with native pilin and pili. , 2005, Microbiology.

[74]  Emilia M F Mauriello,et al.  AglZ regulates adventurous (A‐) motility in Myxococcus xanthus through its interaction with the cytoplasmic receptor, FrzCD , 2009, Molecular microbiology.

[75]  Z. Yang,et al.  Effect of cellular filamentation on adventurous and social gliding motility of Myxococcus xanthus. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Bonnie L. Bassler,et al.  Bacterially Speaking , 2006, Cell.

[77]  C. Bauer,et al.  Characterization of cyst cell formation in the purple photosynthetic bacterium Rhodospirillum centenum. , 2004, Microbiology.

[78]  P. Graumann,et al.  Bacillus subtilis actin-like protein MreB influences the positioning of the replication machinery and requires membrane proteins MreC/D and other actin-like proteins for proper localization , 2005, BMC Cell Biology.

[79]  L. Shimkets,et al.  Novel lipids in Myxococcus xanthus and their role in chemotaxis. , 2006, Environmental microbiology.

[80]  Aggregation during Fruiting Body Formation in Myxococcus xanthus Is Driven by Reducing Cell Movement , 2006, Journal of bacteriology.

[81]  John Neu,et al.  Accordion waves in Myxococcus xanthus , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[82]  E. Hoiczyk,et al.  How Myxobacteria Glide , 2002, Current Biology.

[83]  J P Armitage,et al.  TlpC, a novel chemotaxis protein in Rhodobacter sphaeroides, localizes to a discrete region in the cytoplasm , 2002, Molecular microbiology.

[84]  T. Kruse,et al.  Dysfunctional MreB inhibits chromosome segregation in Escherichia coli , 2003, The EMBO journal.

[85]  Dale Kaiser,et al.  Coupling cell movement to multicellular development in myxobacteria , 2003, Nature Reviews Microbiology.

[86]  R P Burchard,et al.  Gliding motility of prokaryotes: ultrastructure, physiology, and genetics. , 1981, Annual review of microbiology.

[87]  L. Quillet,et al.  Cloning and sequencing of two genes, prtA and prtB, from Myxococcus xanthus, encoding PrtA and PrtB proteases, both of which are required for the protease activity. , 1997, Gene.

[88]  D. Kaiser,et al.  Gliding Mutants of Myxococcus xanthuswith High Reversal Frequencies and Small Displacements , 1999, Journal of bacteriology.

[89]  D. Kaiser,et al.  Type IV pili and cell motility , 1999, Molecular microbiology.

[90]  D. Kaiser,et al.  The pilH gene encodes an ABC transporter homologue required for type IV pilus biogenesis and social gliding motility in Myxococcus xanthus , 1998, Molecular microbiology.

[91]  John R. Kirby,et al.  Rippling Is a Predatory Behavior in Myxococcus xanthus , 2006, Journal of bacteriology.

[92]  M. Eisenbach,et al.  Control of bacterial chemotaxis , 1996, Molecular microbiology.

[93]  D. Wemmer,et al.  An atypical receiver domain controls the dynamic polar localization of the Myxococcus xanthus social motility protein FrzS , 2007, Molecular microbiology.

[94]  Roy D. Welch,et al.  Chemotaxis as an Emergent Property of a Swarm , 2008, Journal of bacteriology.

[95]  S. Melville,et al.  Type IV pili‐dependent gliding motility in the Gram‐positive pathogen Clostridium perfringens and other Clostridia , 2006, Molecular microbiology.

[96]  L. Shapiro,et al.  Polar location of the chemoreceptor complex in the Escherichia coli cell. , 1993, Science.

[97]  D. Kaiser,et al.  Cell alignment required in differentiation of Myxococcus xanthus. , 1990, Science.

[98]  B. Maier,et al.  High-Force Generation Is a Conserved Property of Type IV Pilus Systems , 2009, Journal of bacteriology.

[99]  D. Kaiser,et al.  Induction of coordinated movement of Myxococcus xanthus cells , 1982, Journal of bacteriology.

[100]  D. E. Bradley A function of Pseudomonas aeruginosa PAO polar pili: twitching motility. , 1980, Canadian journal of microbiology.

[101]  L. Shimkets,et al.  Chemotaxis in a gliding bacterium. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[102]  P. Youderian,et al.  Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner , 2003, Molecular microbiology.

[103]  M. Dworkin,et al.  Identification and characterization of Myxococcus xanthus mutants deficient in calcofluor white binding , 1997, Journal of bacteriology.

[104]  J. Errington,et al.  Control of Cell Shape in Bacteria Helical, Actin-like Filaments in Bacillus subtilis , 2001, Cell.

[105]  D. Zusman,et al.  FrzE of Myxococcus xanthus is homologous to both CheA and CheY of Salmonella typhimurium. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[106]  R. Hodges,et al.  The pili of Pseudomonas aeruginosa strains PAK and PAO bind specifically to the carbohydrate sequence βGalNAc(1–4)βGal found in glycosphingolipids asialo‐GM1 and asialo‐GM2 , 1994, Molecular microbiology.

[107]  Qian Xu,et al.  Independence and interdependence of Dif and Frz chemosensory pathways in Myxococcus xanthus chemotaxis , 2008, Molecular microbiology.

[108]  Jonathan Hodgkin,et al.  Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): Two gene systems control movement , 2004, Molecular and General Genetics MGG.

[109]  Zemer Gitai,et al.  MreB Actin-Mediated Segregation of a Specific Region of a Bacterial Chromosome , 2005, Cell.

[110]  D. Kaiser,et al.  The Myxococcus xanthus pilQ(sglA) Gene Encodes a Secretin Homolog Required for Type IV Pilus Biogenesis, Social Motility, and Development , 1999, Journal of bacteriology.

[111]  E. Jahn Beiträge zur botanischen Protistologie , 1924 .

[112]  D. Kaiser,et al.  Cell-to-Cell Transfer of Bacterial Outer Membrane Lipoproteins , 2005, Science.

[113]  H. Vlamakis,et al.  The Che4 pathway of Myxococcus xanthus regulates type IV pilus‐mediated motility , 2004, Molecular microbiology.

[114]  A. Merz,et al.  Bacterial Surface Motility: Slime Trails, Grappling Hooks and Nozzles , 2002, Current Biology.

[115]  D. Zusman,et al.  Behavior of peripheral rods and their role in the life cycle of Myxococcus xanthus , 1991, Journal of bacteriology.

[116]  Dale Kaiser,et al.  Cell movement and its coordination in swarms of myxococcus xanthus , 1983 .

[117]  J. Kirby,et al.  Predataxis behavior in Myxococcus xanthus , 2008, Proceedings of the National Academy of Sciences.

[118]  V. Jakovljevic,et al.  Regulated secretion of a protease activates intercellular signaling during fruiting body formation in M. xanthus. , 2008, Developmental cell.

[119]  D. Zusman,et al.  "Frizzy" mutants: a new class of aggregation-defective developmental mutants of Myxococcus xanthus , 1982, Journal of bacteriology.

[120]  K. Jarrell,et al.  The surprisingly diverse ways that prokaryotes move , 2008, Nature Reviews Microbiology.

[121]  Ruifeng Yang,et al.  AglZ Is a Filament-Forming Coiled-Coil Protein Required for Adventurous Gliding Motility of Myxococcus xanthus , 2004, Journal of bacteriology.

[122]  T. Mignot,et al.  Regulated Pole-to-Pole Oscillations of a Bacterial Gliding Motility Protein , 2005, Science.

[123]  R P Burchard,et al.  Trail following by gliding bacteria , 1982, Journal of bacteriology.

[124]  L. Shimkets,et al.  An Extracellular Matrix-Associated Zinc Metalloprotease Is Required for Dilauroyl Phosphatidylethanolamine Chemotactic Excitation in Myxococcus xanthus , 2002, Journal of bacteriology.

[125]  S. Inouye,et al.  Protein U, a late-developmental spore coat protein of Myxococcus xanthus, is a secretory protein , 1991, Journal of bacteriology.

[126]  D. Kaiser Are There Lateral as Well as Polar Engines for A-Motile Gliding in Myxobacteria? , 2009, Journal of bacteriology.

[127]  E. O'Toole,et al.  Three-Dimensional Macromolecular Organization of Cryofixed Myxococcus xanthus Biofilms as Revealed by Electron Microscopic Tomography , 2009, Journal of bacteriology.

[128]  P. Youderian,et al.  A Chaperone in the HSP70 Family Controls Production of Extracellular Fibrils in Myxococcus xanthus , 1998, Journal of bacteriology.

[129]  P. Hartzell Complementation of sporulation and motility defects in a prokaryote by a eukaryotic GTPase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[130]  E. Rosenberg,et al.  Bactericidal Action of an Antibiotic Produced by Myxococcus xanthus , 1973, Antimicrobial Agents and Chemotherapy.

[131]  D. Zusman,et al.  "Frizzy" aggregation genes of the gliding bacterium Myxococcus xanthus show sequence similarities to the chemotaxis genes of enteric bacteria. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[132]  D. Kaiser,et al.  Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[133]  W. Shi,et al.  Isolation and characterization of a suppressor mutation that restores Myxococcus xanthus exopolysaccharide production. , 2009, Microbiology.

[134]  J. Derrick,et al.  Structure of the Neisseria meningitidis Outer Membrane PilQ Secretin Complex at 12 Å Resolution* , 2004, Journal of Biological Chemistry.

[135]  A. Spormann,et al.  Genetic and Molecular Analysis of cglB, a Gene Essential for Single-Cell Gliding in Myxococcus xanthus , 1999, Journal of bacteriology.

[136]  L. Mahadevan,et al.  Motility powered by supramolecular springs and ratchets. , 2000, Science.

[137]  M. Bowden,et al.  The Myxococcus xanthus lipopolysaccharide O‐antigen is required for social motility and multicellular development , 1998, Molecular microbiology.

[138]  W. Shi,et al.  Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system , 2000, Current Biology.

[139]  Qian Xu,et al.  Type IV pili function upstream of the Dif chemotaxis pathway in Myxococcus xanthus EPS regulation , 2006, Molecular microbiology.

[140]  Dale Kaiser,et al.  Gliding motility and polarized slime secretion , 2007, Molecular microbiology.

[141]  Zhuo Li,et al.  Demonstration of interactions among Myxococcus xanthus Dif chemotaxis-like proteins by the yeast two-hybrid system , 2005, Archives of Microbiology.

[142]  L. Shimkets,et al.  Lipid chemotaxis and signal transduction in Myxococcus xanthus. , 2001, Trends in microbiology.

[143]  L. Shimkets,et al.  Phospholipid directed motility of surface‐motile bacteria , 2006, Molecular microbiology.

[144]  Samuel S. Wu,et al.  Genetic and functional evidence that Type IV pili are required for social gliding motility in Myxococcus xanthus , 1995, Molecular microbiology.

[145]  M. Dworkin,et al.  Biochemical and structural analyses of the extracellular matrix fibrils of Myxococcus xanthus , 1994, Journal of bacteriology.

[146]  M. Glogauer,et al.  The N. gonorrhoeae Type IV Pilus Stimulates Mechanosensitive Pathways and Cytoprotection through a pilT-Dependent Mechanism , 2005, PLoS biology.

[147]  Lotte Søgaard-Andersen,et al.  PilB and PilT Are ATPases Acting Antagonistically in Type IV Pilus Function in Myxococcus xanthus , 2008, Journal of bacteriology.