Extracellular Vesicles from Trypanosoma brucei Mediate Virulence Factor Transfer and Cause Host Anemia

[1]  Cynthia Y. He,et al.  Assembly and maintenance of the flagellum attachment zone filament in Trypanosoma brucei , 2015, Journal of Cell Science.

[2]  Jacco van Rheenen,et al.  In Vivo Imaging Reveals Extracellular Vesicle-Mediated Phenocopying of Metastatic Behavior , 2015, Cell.

[3]  Christopher R. Wood,et al.  Ciliary ectosomes: transmissions from the cell's antenna. , 2015, Trends in cell biology.

[4]  Mark C. Field,et al.  Architecture of a Host–Parasite Interface: Complex Targeting Mechanisms Revealed Through Proteomics* , 2015, Molecular & Cellular Proteomics.

[5]  P. De Baetselier,et al.  Development of a pHrodo-Based Assay for the Assessment of In Vitro and In Vivo Erythrophagocytosis during Experimental Trypanosomosis , 2015, PLoS neglected tropical diseases.

[6]  W. Gibson,et al.  Genetic Recombination between Human and Animal Parasites Creates Novel Strains of Human Pathogen , 2015, PLoS neglected tropical diseases.

[7]  Yong Cheng,et al.  Exosomes and other extracellular vesicles in host–pathogen interactions , 2015, EMBO reports.

[8]  L. O’Driscoll,et al.  Biological properties of extracellular vesicles and their physiological functions , 2015, Journal of extracellular vesicles.

[9]  S. Hajduk,et al.  The Krebs Cycle Enzyme α-Ketoglutarate Decarboxylase Is an Essential Glycosomal Protein in Bloodstream African Trypanosomes , 2014, Eukaryotic Cell.

[10]  Nicholas T. Ingolia,et al.  Extensive stage-regulation of translation revealed by ribosome profiling of Trypanosoma brucei , 2014, BMC Genomics.

[11]  Michael D. Urbaniak,et al.  High-Confidence Glycosome Proteome for Procyclic Form Trypanosoma brucei by Epitope-Tag Organelle Enrichment and SILAC Proteomics , 2014, Journal of proteome research.

[12]  Manfred Auer,et al.  Bacterial social networks: structure and composition of Myxococcus xanthus outer membrane vesicle chains. , 2014, Environmental microbiology.

[13]  H. D. del Portillo,et al.  Extracellular vesicles in parasitic diseases , 2014, Journal of extracellular vesicles.

[14]  A. Ivens,et al.  Genome wide dissection of the quorum sensing signaling pathway in Trypanosoma brucei , 2013, Nature.

[15]  M. M. Teixeira,et al.  Atypical Human Infections by Animal Trypanosomes , 2013, PLoS neglected tropical diseases.

[16]  E. Nigg,et al.  Molecular Basis of Tubulin Transport Within the Cilium by IFT74 and IFT81 , 2013, Science.

[17]  A. Vashisht,et al.  Trichomonas vaginalis Exosomes Deliver Cargo to Host Cells and Mediate Host∶Parasite Interactions , 2013, PLoS pathogens.

[18]  Danny W. Wilson,et al.  Cell-Cell Communication between Malaria-Infected Red Blood Cells via Exosome-like Vesicles , 2013, Cell.

[19]  M. Toner,et al.  Malaria-infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system. , 2013, Cell host & microbe.

[20]  S. Hajduk,et al.  A Single Amino Acid Substitution in the Group 1 Trypanosoma brucei gambiense Haptoglobin-Hemoglobin Receptor Abolishes TLF-1 Binding , 2013, PLoS pathogens.

[21]  Silas P. Rodrigues,et al.  Proteomic analysis of Trypanosoma cruzi secretome: characterization of two populations of extracellular vesicles and soluble proteins. , 2013, Journal of proteome research.

[22]  B. Warscheid,et al.  Mitochondrial Outer Membrane Proteome of Trypanosoma brucei Reveals Novel Factors Required to Maintain Mitochondrial Morphology* , 2012, Molecular & Cellular Proteomics.

[23]  D. Whitworth,et al.  Predatory activity of Myxococcus xanthus outer-membrane vesicles and properties of their hydrolase cargo. , 2012, Microbiology.

[24]  M. Mann,et al.  Comparative Proteomics of Two Life Cycle Stages of Stable Isotope-labeled Trypanosoma brucei Reveals Novel Components of the Parasite's Host Adaptation Machinery* , 2012, Molecular & Cellular Proteomics.

[25]  P. De Baetselier,et al.  Adenylate Cyclases of Trypanosoma brucei Inhibit the Innate Immune Response of the Host , 2012, Science.

[26]  L. Tetley,et al.  Trypanosoma brucei Metacaspase 4 Is a Pseudopeptidase and a Virulence Factor , 2011, The Journal of Biological Chemistry.

[27]  S. Hajduk,et al.  Endosomal Localization of the Serum Resistance-Associated Protein in African Trypanosomes Confers Human Infectivity , 2011, Eukaryotic Cell.

[28]  Edwin A. Saada,et al.  Independent Analysis of the Flagellum Surface and Matrix Proteomes Provides Insight into Flagellum Signaling in Mammalian-infectious Trypanosoma brucei* , 2011, Molecular & Cellular Proteomics.

[29]  Sigal Ben-Yehuda,et al.  Intercellular Nanotubes Mediate Bacterial Communication , 2011, Cell.

[30]  Brian T. Emmer,et al.  Calflagin Inhibition Prolongs Host Survival and Suppresses Parasitemia in Trypanosoma brucei Infection , 2010, Eukaryotic Cell.

[31]  L. Foster,et al.  An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages , 2010, Journal of Cell Science.

[32]  K. Hill,et al.  Social Motility in African Trypanosomes , 2010, PLoS pathogens.

[33]  M. Carrington,et al.  The Glycosylphosphatidylinositol-PLC in Trypanosoma brucei Forms a Linear Array on the Exterior of the Flagellar Membrane Before and After Activation , 2009, PLoS pathogens.

[34]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[35]  P. De Baetselier,et al.  The Role of B-cells and IgM Antibodies in Parasitemia, Anemia, and VSG Switching in Trypanosoma brucei–Infected Mice , 2008, PLoS pathogens.

[36]  S. Luo,et al.  Molecular Characterization of Trypanosoma brucei P-type H+-ATPases* , 2006, Journal of Biological Chemistry.

[37]  K. Gull,et al.  Flagellar motility is required for the viability of the bloodstream trypanosome , 2006, Nature.

[38]  S. Hajduk,et al.  Serum Resistance-Associated Protein Blocks Lysosomal Targeting of Trypanosome Lytic Factor in Trypanosoma brucei , 2006, Eukaryotic Cell.

[39]  W. Faigle,et al.  Cells release prions in association with exosomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[40]  R. Brasseur,et al.  Apolipoprotein L-I is the trypanosome lytic factor of human serum , 2003, Nature.

[41]  L. Vanhamme,et al.  A VSG Expression Site–Associated Gene Confers Resistance to Human Serum in Trypanosoma rhodesiense , 1998, Cell.

[42]  M. Carrington,et al.  The GPI-Phospholipase C of Trypanosoma brucei Is Nonessential But Influences Parasitemia in Mice , 1997, The Journal of cell biology.

[43]  M. Vidal,et al.  In Vitro Fusion of Reticulocyte Endocytic Vesicles with Liposomes (*) , 1995, The Journal of Biological Chemistry.

[44]  R. Hamers,et al.  The serum resistance-associated (SRA) gene of Trypanosoma brucei rhodesiense encodes a variant surface glycoprotein-like protein. , 1994, Molecular and biochemical parasitology.

[45]  U. Frevert,et al.  Formation of filopodia in Trypanosoma congolense by crosslinking the variant surface antigen. , 1988, Journal of ultrastructure and molecular structure research.

[46]  R. Brun,et al.  Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Short communication. , 1979, Acta tropica.

[47]  W. J. Herbert,et al.  Trypanosoma brucei: a rapid "matching" method for estimating the host's parasitemia. , 1976, Experimental parasitology.

[48]  K. Vickerman,et al.  Localization of Variable Antigens in the Surface Coat of Trypanosoma brucei using Ferritin Conjugated Antibody , 1969, Nature.

[49]  P. Myler,et al.  A comprehensive analysis of Trypanosoma brucei mitochondrial proteome , 2009, Proteomics.

[50]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[51]  Marilyn Rifkin,et al.  Trypanosome variant surface glycoprotein transfer to target membranes: a model for the pathogenesis of trypanosomiasis. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[52]  D. Ellis,et al.  Filaments of Trypanosoma brucei: some notes on differences in origin and structure in two strains of Trypanosoma (Trypanozoon) brucei rhodesiense. , 1976, Acta tropica.

[53]  H. Hales,et al.  The formation of filopodium-like processes by Trypanosoma (Trypanozoon) brucei. , 1970, Journal of cell science.

[54]  H. Knothe,et al.  Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene , 1968 .

[55]  N. Tomassini,et al.  The Fine Structure of Trypanosomes. , 1962 .