The rank of the semigroup of transformations stabilising a partition of a finite set

Abstract Let $\mathcal{P}$ be a partition of a finite set X. We say that a transformation f : X → X preserves (or stabilises) the partition $\mathcal{P}$ if for all P ∈ $\mathcal{P}$ there exists Q ∈ $\mathcal{P}$ such that Pf ⊆ Q. Let T(X, $\mathcal{P}$ ) denote the semigroup of all full transformations of X that preserve the partition $\mathcal{P}$ . In 2005 Pei Huisheng found an upper bound for the minimum size of the generating sets of T(X, $\mathcal{P}$ ), when $\mathcal{P}$ is a partition in which all of its parts have the same size. In addition, Pei Huisheng conjectured that his bound was exact. In 2009 the first and last authors used representation theory to solve Pei Huisheng's conjecture. The aim of this paper is to solve the more complex problem of finding the minimum size of the generating sets of T(X, $\mathcal{P}$ ), when $\mathcal{P}$ is an arbitrary partition. Again we use representation theory to find the minimum number of elements needed to generate the wreath product of finitely many symmetric groups, and then use this result to solve the problem. The paper ends with a number of problems for experts in group and semigroup theories.

[1]  Gracinda M. S. Gomes,et al.  On the ranks of certain semigroups of order-preserving transformations , 1992 .

[2]  João Araújo,et al.  The rank of the endomorphism monoid of a uniform partition , 2009 .

[3]  Peter M. Higgins,et al.  COUNTABLE VERSUS UNCOUNTABLE RANKS IN INFINITE SEMIGROUPS OF TRANSFORMATIONS AND RELATIONS , 2003, Proceedings of the Edinburgh Mathematical Society.

[4]  Ranks of Semigroups Generated by Order-Preserving Transformations with a Fixed Partition Type , 2003 .

[5]  Regular centralizers of idempotent transformations , 2011 .

[6]  John M. Howie,et al.  Idempotent rank in finite full transformation semigroups , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[7]  J. Howie Fundamentals of semigroup theory , 1995 .

[8]  João Araújo,et al.  Relative Ranks in the Monoid of Endomorphisms of an Independence Algebra , 2007 .

[9]  Janusz Konieczny,et al.  Automorphism groups of centralizers of idempotents , 2003 .

[10]  Howard Straubing The wreath product and its applications , 1988, Formal Properties of Finite Automata and Applications.

[11]  Janusz Konieczny,et al.  Semigroups of Transformations Preserving an Equivalence Relation and a Cross-Section , 2004 .

[12]  G. U. Garba On the nilpotent ranks of certain semigroups of transformations , 1994 .

[13]  Pei Huisheng On the Rank of the Semigroup TE(X) , 2005 .

[14]  Nik Ruskuc,et al.  On relative ranks of full transformation semigroups , 1998 .

[15]  Wacław Sierpiński Sur les suites infinies de fonctions définies dans les ensembles quelconques , 1935 .

[16]  J. D. P. Meldrum Wreath Products of Groups and Semigroups , 1995 .

[17]  George R. Barnes,et al.  On Idempotent Ranks of Semigroups of Partial Transformations , 2005 .

[18]  M. Isabel,et al.  Rank properties in finite inverse semigroups , 2000, Proceedings of the Edinburgh Mathematical Society.

[19]  Martin W. Liebeck,et al.  The Subgroup Structure of the Finite Classical Groups , 1990 .

[20]  Nik Ruskuc,et al.  Rank Properties of Endomorphisms of Infinite Partially Ordered Sets , 2006 .

[21]  J. Cichon,et al.  Generating continuous mappings with Lipschitz mappings , 2006 .

[22]  Peter M. Higgins,et al.  Generators and factorisations of transformation semigroups , 1998, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[23]  Inessa Levi,et al.  COMBINATORIAL TECHNIQUES FOR DETERMINING RANK AND IDEMPOTENT RANK OF CERTAIN FINITE SEMIGROUPS , 2002 .

[24]  On generating countable sets of endomorphisms , 2003 .

[25]  Nilpotent Ranks of Semigroups of Partial Transformations , 2006 .

[26]  Janusz Konieczny,et al.  A method for finding new sets of axioms for classes of semigroups , 2012, Arch. Math. Log..