The rank of the semigroup of transformations stabilising a partition of a finite set
暂无分享,去创建一个
W. Bentz | Csaba Schneider | J. Araújo | JOÃO ARAÚJO | WOLFRAM BENTZ | JAMES D. MITCHELL | CSABA SCHNEIDER | J. Mitchell
[1] Gracinda M. S. Gomes,et al. On the ranks of certain semigroups of order-preserving transformations , 1992 .
[2] João Araújo,et al. The rank of the endomorphism monoid of a uniform partition , 2009 .
[3] Peter M. Higgins,et al. COUNTABLE VERSUS UNCOUNTABLE RANKS IN INFINITE SEMIGROUPS OF TRANSFORMATIONS AND RELATIONS , 2003, Proceedings of the Edinburgh Mathematical Society.
[4] Ranks of Semigroups Generated by Order-Preserving Transformations with a Fixed Partition Type , 2003 .
[5] Regular centralizers of idempotent transformations , 2011 .
[6] John M. Howie,et al. Idempotent rank in finite full transformation semigroups , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[7] J. Howie. Fundamentals of semigroup theory , 1995 .
[8] João Araújo,et al. Relative Ranks in the Monoid of Endomorphisms of an Independence Algebra , 2007 .
[9] Janusz Konieczny,et al. Automorphism groups of centralizers of idempotents , 2003 .
[10] Howard Straubing. The wreath product and its applications , 1988, Formal Properties of Finite Automata and Applications.
[11] Janusz Konieczny,et al. Semigroups of Transformations Preserving an Equivalence Relation and a Cross-Section , 2004 .
[12] G. U. Garba. On the nilpotent ranks of certain semigroups of transformations , 1994 .
[13] Pei Huisheng. On the Rank of the Semigroup TE(X) , 2005 .
[14] Nik Ruskuc,et al. On relative ranks of full transformation semigroups , 1998 .
[15] Wacław Sierpiński. Sur les suites infinies de fonctions définies dans les ensembles quelconques , 1935 .
[16] J. D. P. Meldrum. Wreath Products of Groups and Semigroups , 1995 .
[17] George R. Barnes,et al. On Idempotent Ranks of Semigroups of Partial Transformations , 2005 .
[18] M. Isabel,et al. Rank properties in finite inverse semigroups , 2000, Proceedings of the Edinburgh Mathematical Society.
[19] Martin W. Liebeck,et al. The Subgroup Structure of the Finite Classical Groups , 1990 .
[20] Nik Ruskuc,et al. Rank Properties of Endomorphisms of Infinite Partially Ordered Sets , 2006 .
[21] J. Cichon,et al. Generating continuous mappings with Lipschitz mappings , 2006 .
[22] Peter M. Higgins,et al. Generators and factorisations of transformation semigroups , 1998, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[23] Inessa Levi,et al. COMBINATORIAL TECHNIQUES FOR DETERMINING RANK AND IDEMPOTENT RANK OF CERTAIN FINITE SEMIGROUPS , 2002 .
[24] On generating countable sets of endomorphisms , 2003 .
[25] Nilpotent Ranks of Semigroups of Partial Transformations , 2006 .
[26] Janusz Konieczny,et al. A method for finding new sets of axioms for classes of semigroups , 2012, Arch. Math. Log..