Vertex decomposable graphs and obstructions to shellability

Inspired by several recent papers on the edge ideal of a graph G, we study the equivalent notion of the independence complex of G. Using the tool of vertex decomposability from geometric combinatorics, we show that 5-chordal graphs with no chordless 4-cycles are shellable and sequentially Cohen-Macaulay. We use this result to characterize the obstructions to shellability in flag complexes, extending work of Billera, Myers, and Wachs. We also show how vertex decomposability may be used to show that certain graph constructions preserve shellability.

[1]  Roy Meshulam,et al.  Domination numbers and homology , 2003, J. Comb. Theory A.

[2]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[3]  Bertrand Jouve,et al.  Simplicial simple-homotopy of flag complexes in terms of graphs , 2008, Eur. J. Comb..

[4]  Rafael H. Villarreal,et al.  Cohen-macaulay graphs , 1990 .

[5]  Huy Tài Hà,et al.  Whiskers and sequentially Cohen-Macaulay graphs , 2008, J. Comb. Theory, Ser. A.

[6]  Michelle L. Wachs Obstructions to Shellability , 1999, Discret. Comput. Geom..

[7]  W. Trotter,et al.  Combinatorics and Partially Ordered Sets: Dimension Theory , 1992 .

[8]  M. Wachs SHELLABLE NONPURE COMPLEXES AND POSETS. I , 1996 .

[9]  Michelle L. Wachs,et al.  Shellable nonpure complexes and posets. II , 1996 .

[10]  J. Schiff Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[11]  John Ginsburg,et al.  Dismantlability Revisited for Ordered Sets and Graphs and the Fixed-Clique Property , 1994, Canadian Mathematical Bulletin.

[12]  Rafael H. Villarreal,et al.  Shellable graphs and sequentially Cohen-Macaulay bipartite graphs , 2008, J. Comb. Theory, Ser. A.

[13]  R. Stanley Combinatorics and commutative algebra , 1983 .

[14]  J. Scott Provan,et al.  Decompositions of Simplicial Complexes Related to Diameters of Convex Polyhedra , 1980, Math. Oper. Res..

[15]  A. Björner Topological methods , 1996 .

[16]  Caroline J. Klivans Threshold graphs, shifted complexes, and graphical complexes , 2007, Discret. Math..

[17]  Dmitry N. Kozlov,et al.  Complexes of Directed Trees , 1999, J. Comb. Theory A.

[18]  Irena Rusu,et al.  Dirac-type characterizations of graphs without long chordless cycles , 2002, Discret. Math..

[19]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[20]  T. Gallai Transitiv orientierbare Graphen , 1967 .

[21]  Anton Dochtermann,et al.  Algebraic Properties of Edge Ideals via Combinatorial Topology , 2008, Electronic Journal of Combinatorics.

[22]  Michelle L. Wachs Poset Topology: Tools and Applications , 2006 .

[23]  W. Bruns,et al.  Cohen-Macaulay rings , 1993 .

[24]  Louis J. Billera,et al.  Shellability of Interval Orders , 1998 .

[25]  Volkmar Welker,et al.  On sequentially Cohen-Macaulay complexes and posets , 2007 .

[26]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[27]  E. Berger,et al.  Eigenvalues and homology of flag complexes and vector representations of graphs , 2003 .

[28]  Christopher A. Francisco,et al.  Sequentially Cohen-Macaulay edge ideals , 2005, math/0511022.

[29]  Takayuki Hibi,et al.  Cohen-Macaulay chordal graphs , 2006, J. Comb. Theory, Ser. A.