Modeling dendritic solidification of Al–3%Cu using cellular automaton and phase-field methods

Abstract We compared a cellular automaton (CA)–finite element (FE) model and a phase-field (PF)–FE model to simulate equiaxed dendritic growth during the solidification of cubic crystals. The equations of mass and heat transports were solved in the CA–FE model to calculate the temperature field, solute concentration, and the dendritic growth morphology. In the PF–FE model, a PF variable was used to identify solid and liquid phases and another PF variable was considered to determine the evolution of solute concentration. Application to Al–3.0 wt.% Cu alloy illustrates the capability of both CA–FE and PF–FE models in modeling multiple arbitrarily-oriented dendrites in growth of cubic crystals. Simulation results from both models showed quantitatively good agreement with the analytical model developed by Lipton–Glicksman–Kurz (LGK) in the tip growth velocity and the tip equilibrium liquid concentration at a given melt undercooling. The dendrite morphology and computational time obtained from the CA–FE model are compared to those of the PF–FE model and the distinct advantages of both methods are discussed.

[1]  Ingo Steinbach,et al.  Phase Field Simulation of Equiaxed Solidification in Technical Alloys , 2006 .

[2]  D. R. Johnson,et al.  The development of a cellular automaton-finite volume model for dendritic growth , 2009 .

[3]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[4]  Peter D. Lee,et al.  A model of solidification microstructures in nickel-based superalloys: predicting primary dendrite spacing selection , 2003 .

[5]  P. Jimack,et al.  Solute trapping and the effects of anti-trapping currents on phase-field models of coupled thermo-solutal solidification , 2010 .

[6]  Mark F. Horstemeyer,et al.  Effects of internal stresses and intermediate phases on the coarsening of coherent precipitates: A phase-field study , 2012 .

[7]  Nikolas Provatas,et al.  A quantitative multi-phase field model of polycrystalline alloy solidification , 2010 .

[8]  C. Gandin,et al.  A new cellular automaton?finite element coupling scheme for alloy solidification , 2004 .

[9]  A. A. Wheeler,et al.  Thermodynamically-consistent phase-field models for solidification , 1992 .

[10]  Jincheng Wang,et al.  Phase-field modeling of isothermal dendritic coarsening in ternary alloys , 2008 .

[11]  M. Zhu,et al.  Modified cellular automaton model for the prediction of dendritic growth with melt convection. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  L. Nastac Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys , 1999 .

[13]  J. Warren,et al.  Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method , 1995 .

[14]  Laxmikant V. Kale,et al.  Parallelization of a level set method for simulating dendritic growth , 2006, J. Parallel Distributed Comput..

[15]  Dierk Raabe,et al.  Lattice Boltzmann modeling of dendritic growth in a forced melt convection , 2009 .

[16]  Doru M. Stefanescu,et al.  Growth of solutal dendrites: A cellular automaton model and its quantitative capabilities , 2003 .

[17]  N. B. Bruce,et al.  Three-dimensional cellular automaton models of microstructural evolution during solidification , 1995, Journal of Materials Science.

[18]  James M. McDonough,et al.  A Numerical procedure for solving 2D phase-field model problems , 2006, J. Comput. Phys..

[19]  S. Felicelli,et al.  Simulation of a dendritic microstructure with the lattice Boltzmann and cellular automaton methods , 2011 .

[20]  L. Kramer,et al.  Effect of the anisotropic surface tension, crystallization kinetics, and heat diffusion on nonequilibrium growth of liquid crystals , 1998 .

[21]  Toshio Suzuki,et al.  Phase-field model for solidification of ternary alloys coupled with thermodynamic database , 2003 .

[22]  Britta Nestler,et al.  Phase-field modelling of solute trapping during rapid solidification of a Si–As alloy , 2006 .

[23]  Evaluation of the stress distribution in a cellular microstructure using a phase field model , 2010 .

[24]  Juan C. Heinrich,et al.  Front-tracking finite element method for dendritic solidification: 765 , 2001 .

[25]  Mark F. Horstemeyer,et al.  Effect of the Compositional Strain on the Diffusive Interface Thickness and on the Phase Transformation in a Phase-Field Model for Binary Alloys , 2011 .

[26]  C. Gandin,et al.  Probabilistic modelling of microstructure formation in solidification processes , 1993 .

[27]  S. Felicelli,et al.  A cellular automaton model for dendrite growth in magnesium alloy AZ91 , 2009 .

[28]  C. Gandin,et al.  A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes , 1994 .

[29]  A. Karma,et al.  Phase-Field Simulation of Solidification , 2002 .

[30]  S. Felicelli,et al.  Comparison of Cellular Automaton and Phase Field Models to Simulate Dendrite Growth in Hexagonal Crystals , 2012 .

[31]  Martin E. Glicksman,et al.  Dendritic growth into undercooled alloy metals , 1984 .

[32]  Wheeler,et al.  Phase-field model for isothermal phase transitions in binary alloys. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[33]  N. Zabaras,et al.  A level set simulation of dendritic solidification with combined features of front-tracking and fixed-domain methods , 2006 .

[34]  Suresh V. Garimella,et al.  FIXED-GRID FRONT-TRACKING ALGORITHM FOR SOLIDIFICATION PROBLEMS, PART I: METHOD AND VALIDATION , 2003 .

[35]  R. Kobayashi Modeling and numerical simulations of dendritic crystal growth , 1993 .

[36]  C. Gandin,et al.  A 3D Cellular Automaton algorithm for the prediction of dendritic grain growth , 1997 .

[37]  D. Stefanescu,et al.  Virtual front tracking model for the quantitative modeling of dendritic growth in solidification of alloys , 2007 .

[38]  C. Gandin,et al.  A three-dimensional cellular automation-finite element model for the prediction of solidification grain structures , 1999 .

[39]  Z. Han,et al.  Modeling and Simulation of Microstructure Evolution of Cast Mg Alloy , 2010 .

[40]  M. Horstemeyer,et al.  Investigating thermal effects on morphological evolution during crystallisation of hcp metals: three-dimensional phase field study , 2012 .

[41]  S. Mesarovic,et al.  Morphological instabilities in thin films: Evolution maps , 2011 .

[42]  A. Karma,et al.  Quantitative phase-field modeling of dendritic growth in two and three dimensions , 1996 .

[43]  Gretar Tryggvason,et al.  Numerical simulation of dendritic solidification with convection: three-dimensional flow , 2004 .

[44]  THE ROLE OF COMPOSITIONAL STRAIN IN THE INSTABILITY OF SOLID-FLUID THIN FILM INTERFACES , 2011 .

[45]  A. Karma,et al.  Regular Article: Modeling Melt Convection in Phase-Field Simulations of Solidification , 1999 .

[46]  Mohsen Asle Zaeem,et al.  Finite element method for conserved phase fields: Stress-mediated diffusional phase transformation , 2010, J. Comput. Phys..

[47]  Nikolas Provatas,et al.  Competition between surface energy and elastic anisotropies in the growth of coherent solid-state dendrites , 2008, 0810.4978.

[48]  Jonathan A. Dantzig,et al.  MULTISCALE MODELING OF SOLIDIFICATION: PHASE-FIELD METHODS TO ADAPTIVE MESH REFINEMENT , 2005 .

[49]  Dantzig,et al.  Computation of dendritic microstructures using a level set method , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  Michael P. Anderson,et al.  Computer simulation of grain growth—IV. Anisotropic grain boundary energies , 1985 .

[51]  D. Stefanescu,et al.  A quantitative dendrite growth model and analysis of stability concepts , 2004 .

[52]  Ronald Fedkiw,et al.  A Level Set Approach for the Numerical Simulation of Dendritic Growth , 2003, J. Sci. Comput..

[53]  A. Karma,et al.  Phase-field simulations of dendritic crystal growth in a forced flow. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[55]  Wouter-Jan Rappel,et al.  Phase-field simulation of three-dimensional dendrites: is microscopic solvability theory correct? , 1997 .