Aspects of planar polynomial vector fields: global versus local, real versus complex, analytic versus algebraic and geometric

[1]  Shi Songling,et al.  On the structure of Poincaré-Lyapunov constants for the weak focus of polynomial vector fields , 1984 .

[2]  W. A. Coppel,et al.  A survey of quadratic systems , 1966 .

[3]  Y. Il'yashenko Centennial History of Hilbert’s 16th Problem , 2002 .

[4]  Y. Ilyashenko,et al.  Finiteness Theorems for Limit Cycles , 1991 .

[5]  H. Poincaré,et al.  Sur les courbes définies par les équations différentielles(III) , 1885 .

[6]  Freddy Dumortier,et al.  Hilbert′s 16th Problem for Quadratic Vector Fields , 1994 .

[7]  H. Dulac,et al.  Sur les cycles limites , 1923 .

[8]  R. Kooij,et al.  Algebraic invariant curves and the integrability of polynomial systems , 1993 .

[9]  W. Fulton,et al.  Algebraic Curves: An Introduction to Algebraic Geometry , 1969 .

[10]  S. Smale,et al.  Finding a horseshoe on the beaches of Rio , 1998 .

[11]  Iliya D. Iliev,et al.  On Saddle-Loop Bifurcations of Limit Cycles in Perturbations of Quadratic Hamiltonian Systems , 1994 .

[12]  Jean Ecalle,et al.  Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac , 1992 .

[13]  J. Sotomayor,et al.  Quadratic vector fields with finitely many periodic orbits , 1983 .

[14]  Joan C. Artés,et al.  Quadratic vector fields with a weak focus of third order , 1997 .

[15]  Freddy Dumortier,et al.  Local bifurcations and a survey of bounded quadratic systems , 2000 .

[16]  Dana Schlomiuk Algebraic particular integrals, integrability and the problem of the center , 1993 .

[17]  M. Poincaré,et al.  Sur Ľintégration algébrique des équations différentielles du premier ordre et du premier degré , 1891 .

[18]  Lubomir Gavrilov,et al.  The infinitesimal 16th Hilbert problem in the quadratic case , 2001 .

[19]  W. Fulton Algebraic curves , 1969 .

[20]  E. Velasco,et al.  Generic properties of polynomial vector fields at infinity , 1969 .

[21]  Dana Schlomiuk,et al.  Summing up the Dynamics of Quadratic Hamiltonian Systems With a Center , 1997, Canadian Journal of Mathematics.

[22]  H. Weyl The Classical Groups , 1940 .

[23]  S. Smale Mathematical problems for the next century , 1998 .

[24]  Ian Stewart,et al.  Hilbert's sixteenth problem , 1987, Nature.

[25]  L. Markus Global structure of ordinary differential equations in the plane , 1954 .

[26]  D. A. Neumann Classification of continuous flows on 2-manifolds , 1975 .

[27]  Freddy Dumortier,et al.  Elementary graphics of cyclicity 1 and 2 , 1994 .

[28]  D. Hilbert,et al.  Theory of algebraic invariants , 1993 .

[29]  N. N. Bautin,et al.  On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type , 1954 .

[30]  Jaume Llibre,et al.  Quadratic Hamiltonian Vector Fields , 1994 .

[31]  C Li TWO PROBLEMS OF PLANAR QUADRATIC SYSTEMS , 1983 .

[32]  M. Dulac Recherches sur les points singuliers des équations différentielles , 1903 .

[33]  J. Dieudonne,et al.  Invariant theory, old and new , 1971 .

[34]  H. Swinnerton-Dyer,et al.  Notes on elliptic curves. II. , 1963 .

[35]  Zhang Pingguang On the distribution and number of limit cycles for quadratic systems with two foci , 2002 .

[36]  J. Llibre,et al.  On the differentiability of first integrals of two dimensional flows , 2002 .

[37]  Songling Shi,et al.  A CONCRETE EXAMPLE OF THE EXISTENCE OF FOUR LIMIT CYCLES FOR PLANE QUADRATIC SYSTEMS , 1980 .

[38]  Jaume Llibre,et al.  Weak Focus, Limit Cycles, and Bifurcations for Bounded Quadratic Systems , 1995 .

[39]  Around Hilbert-Arnold Problem , 2001, math/0111053.

[40]  Freddy Dumortier,et al.  Quadratic models for generic local 3-parameter bifurcations on the plane , 1991 .

[41]  Iliya D. Iliev THE CYCLICITY OF THE PERIOD ANNULUS OF THE QUADRATIC HAMILTONIAN TRIANGLE , 1996 .

[42]  H. Zoladek,et al.  Quadratic Systems with Center and Their Perturbations , 1994 .

[43]  D. Hilbert Über die Theorie der algebraischen Formen , 1890 .

[44]  André Weil Foundations of Algebraic Geometry , 1946 .

[45]  Jaume Llibre,et al.  Algebraic aspects of integrability for polynomial systems , 1999 .

[46]  D. Hilbert,et al.  Ueber die vollen Invariantensysteme , 1893 .

[47]  Shi Songling,et al.  A method of constructing cycles without contact around a weak focus , 1981 .

[48]  Dana Schlomiuk,et al.  On the geometric structure of the class of planar quadratic differential systems , 2002 .

[49]  I. Nikolaev,et al.  Topological Classification of Quadratic Systems at Infinity , 1997 .

[50]  Jayanta Kumar Pal,et al.  On the geometry in the neighborhood of infinity of quadratic differential systems with a weak focus , 2001 .

[51]  Dana Schlomiuk,et al.  Algebraic and Geometric Aspects of the Theory of Polynomial Vector Fields , 1993 .

[52]  P. Painlevé Mémoire sur les équations différentielles du premier ordre , 1891 .

[53]  D. Mumford,et al.  Geometric Invariant Theory , 2011 .

[54]  Quantitative theory of ordinary differential equations and tangential Hilbert 16th problem , 2001, math/0104140.