Aspects of planar polynomial vector fields: global versus local, real versus complex, analytic versus algebraic and geometric
暂无分享,去创建一个
[1] Shi Songling,et al. On the structure of Poincaré-Lyapunov constants for the weak focus of polynomial vector fields , 1984 .
[2] W. A. Coppel,et al. A survey of quadratic systems , 1966 .
[3] Y. Il'yashenko. Centennial History of Hilbert’s 16th Problem , 2002 .
[4] Y. Ilyashenko,et al. Finiteness Theorems for Limit Cycles , 1991 .
[5] H. Poincaré,et al. Sur les courbes définies par les équations différentielles(III) , 1885 .
[6] Freddy Dumortier,et al. Hilbert′s 16th Problem for Quadratic Vector Fields , 1994 .
[7] H. Dulac,et al. Sur les cycles limites , 1923 .
[8] R. Kooij,et al. Algebraic invariant curves and the integrability of polynomial systems , 1993 .
[9] W. Fulton,et al. Algebraic Curves: An Introduction to Algebraic Geometry , 1969 .
[10] S. Smale,et al. Finding a horseshoe on the beaches of Rio , 1998 .
[11] Iliya D. Iliev,et al. On Saddle-Loop Bifurcations of Limit Cycles in Perturbations of Quadratic Hamiltonian Systems , 1994 .
[12] Jean Ecalle,et al. Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac , 1992 .
[13] J. Sotomayor,et al. Quadratic vector fields with finitely many periodic orbits , 1983 .
[14] Joan C. Artés,et al. Quadratic vector fields with a weak focus of third order , 1997 .
[15] Freddy Dumortier,et al. Local bifurcations and a survey of bounded quadratic systems , 2000 .
[16] Dana Schlomiuk. Algebraic particular integrals, integrability and the problem of the center , 1993 .
[17] M. Poincaré,et al. Sur Ľintégration algébrique des équations différentielles du premier ordre et du premier degré , 1891 .
[18] Lubomir Gavrilov,et al. The infinitesimal 16th Hilbert problem in the quadratic case , 2001 .
[19] W. Fulton. Algebraic curves , 1969 .
[20] E. Velasco,et al. Generic properties of polynomial vector fields at infinity , 1969 .
[21] Dana Schlomiuk,et al. Summing up the Dynamics of Quadratic Hamiltonian Systems With a Center , 1997, Canadian Journal of Mathematics.
[22] H. Weyl. The Classical Groups , 1940 .
[23] S. Smale. Mathematical problems for the next century , 1998 .
[24] Ian Stewart,et al. Hilbert's sixteenth problem , 1987, Nature.
[25] L. Markus. Global structure of ordinary differential equations in the plane , 1954 .
[26] D. A. Neumann. Classification of continuous flows on 2-manifolds , 1975 .
[27] Freddy Dumortier,et al. Elementary graphics of cyclicity 1 and 2 , 1994 .
[28] D. Hilbert,et al. Theory of algebraic invariants , 1993 .
[29] N. N. Bautin,et al. On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type , 1954 .
[30] Jaume Llibre,et al. Quadratic Hamiltonian Vector Fields , 1994 .
[31] C Li. TWO PROBLEMS OF PLANAR QUADRATIC SYSTEMS , 1983 .
[32] M. Dulac. Recherches sur les points singuliers des équations différentielles , 1903 .
[33] J. Dieudonne,et al. Invariant theory, old and new , 1971 .
[34] H. Swinnerton-Dyer,et al. Notes on elliptic curves. II. , 1963 .
[35] Zhang Pingguang. On the distribution and number of limit cycles for quadratic systems with two foci , 2002 .
[36] J. Llibre,et al. On the differentiability of first integrals of two dimensional flows , 2002 .
[37] Songling Shi,et al. A CONCRETE EXAMPLE OF THE EXISTENCE OF FOUR LIMIT CYCLES FOR PLANE QUADRATIC SYSTEMS , 1980 .
[38] Jaume Llibre,et al. Weak Focus, Limit Cycles, and Bifurcations for Bounded Quadratic Systems , 1995 .
[39] Around Hilbert-Arnold Problem , 2001, math/0111053.
[40] Freddy Dumortier,et al. Quadratic models for generic local 3-parameter bifurcations on the plane , 1991 .
[41] Iliya D. Iliev. THE CYCLICITY OF THE PERIOD ANNULUS OF THE QUADRATIC HAMILTONIAN TRIANGLE , 1996 .
[42] H. Zoladek,et al. Quadratic Systems with Center and Their Perturbations , 1994 .
[43] D. Hilbert. Über die Theorie der algebraischen Formen , 1890 .
[44] André Weil. Foundations of Algebraic Geometry , 1946 .
[45] Jaume Llibre,et al. Algebraic aspects of integrability for polynomial systems , 1999 .
[46] D. Hilbert,et al. Ueber die vollen Invariantensysteme , 1893 .
[47] Shi Songling,et al. A method of constructing cycles without contact around a weak focus , 1981 .
[48] Dana Schlomiuk,et al. On the geometric structure of the class of planar quadratic differential systems , 2002 .
[49] I. Nikolaev,et al. Topological Classification of Quadratic Systems at Infinity , 1997 .
[50] Jayanta Kumar Pal,et al. On the geometry in the neighborhood of infinity of quadratic differential systems with a weak focus , 2001 .
[51] Dana Schlomiuk,et al. Algebraic and Geometric Aspects of the Theory of Polynomial Vector Fields , 1993 .
[52] P. Painlevé. Mémoire sur les équations différentielles du premier ordre , 1891 .
[53] D. Mumford,et al. Geometric Invariant Theory , 2011 .
[54] Quantitative theory of ordinary differential equations and tangential Hilbert 16th problem , 2001, math/0104140.