Calixarene‐Based Fluorescent Molecular Sensors for Toxic Metals

There is an increasing interest in the early detection of toxic metals in the environment. In this context, fluorescence is a very attractive detection method because of its intrinsic sensitivity, its response time and the possibility of imaging via fluorescence microscopy. Of the various complexing units available for the detection of toxic metal ions (chelators, open-chain structures, crown-ethers, cryptands), calixarenes offer distinct advantages in term of selectivity and the easy incorporation of a fluorophore into the structure. In this microreview, after recalling the main classes offluorescent molecular sensors based on cation-induced changes in excited-state processes (photoinduced electron- or charge-transfer, excimer formation, energy transfer), we present various calixarene-based sensors designed for the detection of caesium, mercury, lead and cadmium.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)

[1]  I. Leray,et al.  Multichromophoric supramolecular systems. Recovery of the distributions of decay times from the fluorescence decays. , 2009, Dalton transactions.

[2]  I. Leray,et al.  Femtosecond to subnanosecond multistep calcium photoejection from a crown ether-linked merocyanine. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[3]  I. Leray,et al.  Photophysics of cyclic multichromophoric systems based on β-cyclodextrin and calix[4]arene with appended pyridin-2′-yl-1,2,3-triazolegroups , 2008, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[4]  Sun Young Park,et al.  A pyrenyl-appended triazole-based calix[4]arene as a fluorescent sensor for Cd2+ and Zn2+. , 2008, The Journal of organic chemistry.

[5]  Elizabeth M. Nolan,et al.  Tools and tactics for the optical detection of mercuric ion. , 2008, Chemical reviews.

[6]  R. Butcher,et al.  New fluorogenic dansyl-containing calix[4]arene in the partial cone conformation for highly sensitive and selective recognition of lead(II). , 2008, Inorganic chemistry.

[7]  Jiasheng Wu,et al.  Calix[4]arene-based, Hg2+ -induced intramolecular fluorescence resonance energy transfer chemosensor. , 2007, The Journal of organic chemistry.

[8]  Duong Tuan Quang,et al.  Calixarene-derived fluorescent probes. , 2007, Chemical reviews.

[9]  Kai-Chi Chang,et al.  Triazole-modified calix[4]crown as a novel fluorescent on-off switchable chemosensor. , 2007, Organic letters.

[10]  M. Reddy,et al.  A new Hg(2+) -selective fluorescent sensor based on a 1,3-alternate thiacalix[4]arene anchored with four 8-quinolinoloxy groups. , 2007, Inorganic chemistry.

[11]  Duong Tuan Quang,et al.  Ion-induced FRET on-off in fluorescent calix[4]arene. , 2007, The Journal of organic chemistry.

[12]  I. Leray,et al.  Ion-responsive supramolecular fluorescent systems based on multichromophoric calixarenes: A review , 2007 .

[13]  R. Bartsch,et al.  Optical determination of thallium(I) and cesium(I) with a fluorogenic calix[4]arenebis(crown-6 ether) containing one pendent dansyl group. , 2007, Analytical chemistry.

[14]  I. Leray,et al.  Selective detection of cesium by a water-soluble fluorescent molecular sensor based on a calix[4]arene-bis(crown-6-ether). , 2006, Chemical communications.

[15]  Su Ho Kim,et al.  A PCT-based, pyrene-armed calix[4]crown fluoroionophore. , 2006, The Journal of organic chemistry.

[16]  Su Ho Kim,et al.  Metal ion sensing novel calix[4]crown fluoroionophore with a two-photon absorption property. , 2006, The Journal of organic chemistry.

[17]  Jun‐Min Liu,et al.  Highly selective fluorescent sensing of Pb2+ by a new calix[4]arene derivative , 2006 .

[18]  S. Ham,et al.  Fluorescent ratiometry of tetrahomodioxacalix[4]arene pyrenylamides upon cation complexation. , 2006, Organic letters.

[19]  J. Bok,et al.  Selective metal detection in an unsymmetrical 1,3-alternate calix[4]biscrown chemosensor , 2006 .

[20]  Juyoung Yoon,et al.  Calix[4]crown in dual sensing functions with FRET , 2005 .

[21]  R. Bartsch,et al.  Novel fluorogenic calix[4]arene-bis(crown-6-ether) for selective recognition of thallium(I). , 2005, Chemical communications.

[22]  Su Ho Kim,et al.  Indium(III)-induced fluorescent excimer formation and extinction in calix[4]arene-fluoroionophores. , 2005, Inorganic chemistry.

[23]  I. Leray,et al.  A mesoporous silica functionalized by a covalently bound calixarene-based fluoroionophore for selective optical sensing of mercury(II) in water , 2005 .

[24]  Amal Moulik,et al.  Trends in environmental analysis. , 2005, Analytical chemistry.

[25]  Chuan-Feng Chen,et al.  A new Hg2+-selective fluorescent sensor based on a dansyl amide-armed calix[4]-aza-crown , 2005 .

[26]  J. Lee,et al.  An excimer-based, binuclear, on-off switchable calix[4]crown chemosensor. , 2004, Journal of the American Chemical Society.

[27]  J. Kim,et al.  Hg2+-selective fluoroionophore of p-tert-butylcalix[4]arene-diaza-crown ether having pyrenylacetamide subunits , 2004 .

[28]  I. Leray,et al.  Lead and mercury sensing by calixarene-based fluoroionophores bearing two or four dansyl fluorophores. , 2004, Chemistry.

[29]  I. Leray,et al.  Photophysics of Calix[4]biscrown-Based Ditopic Receptors of Caesium Containing One or Two Dioxocoumarin Fluorophores , 2004, Journal of Fluorescence.

[30]  I. Leray,et al.  Photophysics of calixarenes bearing two or four dansyl fluorophores: charge, proton and energy transfers , 2004, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[31]  I. Leray,et al.  A highly sensitive and selective fluorescent molecular sensor for Pb(II) based on a calix[4]arene bearing four dansyl groups. , 2003, Chemical communications.

[32]  I. Leray,et al.  Reversible bulk photorelease of strontium ion from a crown ether-linked merocyanine. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[33]  I. Leray,et al.  Synthesis and binding properties of calix[4]biscrown-based fluorescent molecular sensors for caesium or potassium ions , 2002 .

[34]  J. Choe,et al.  New Hg2+-selective fluoroionophores derived from p-tert-butylcalix[4]arene–azacrown ethers , 2002 .

[35]  Juyoung Yoon,et al.  Pyrene-armed calix[4]azacrowns as new fluorescent ionophores: "molecular taekowndo" process via fluorescence change. , 2002, The Journal of organic chemistry.

[36]  R. Hettich,et al.  Synthesis and sensing behavior of cyanoanthracene modified 1,3-alternate calix[4]benzocrown-6: a new class of Cs+ selective optical sensors , 2001 .

[37]  Reza Dabestani,et al.  A Supramolecular Fluorescent Probe, Activated by Protons To Detect Cesium and Potassium Ions, Mimics the Function of a Logic Gate , 2000 .

[38]  I. Leray,et al.  Design principles of fluorescent molecular sensors for cation recognition , 2000 .

[39]  Y. Higuchi Fluorescent Chemo-Sensor for Metal Cations Based on Thiacalix[4]arenes Modified with Dansyl Moieties at the Lower Rim , 2000 .

[40]  R. Bartsch,et al.  A Calixarene-Based Fluorogenic Reagent for Selective Mercury(II) Recognition. , 1999, Analytical chemistry.

[41]  M. Lemaire,et al.  Synthesis of water soluble molecular receptor from calix[4]arene-bis-crown-6 , 1998 .

[42]  F. Hamada,et al.  Metal sensor of water soluble dansyl-modified thiacalix[4]arenes , 1998 .

[43]  A. Gies,et al.  Potential for secondary poisoning and biomagnification in marine organisms. , 1997, Chemosphere.

[44]  Terence E. Rice,et al.  Signaling Recognition Events with Fluorescent Sensors and Switches. , 1997, Chemical reviews.

[45]  Atsushi Ikeda,et al.  Novel Cavity Design Using Calix[n]arene Skeletons: Toward Molecular Recognition and Metal Binding. , 1997, Chemical reviews.

[46]  C. Hill,et al.  Doubly Crowned Calix[4]arenes in the 1,3-Alternate Conformation as Cesium-Selective Carriers in Supported Liquid Membranes , 1995 .

[47]  V. Böhmer Calixarenes, Macrocycles with (Almost) Unlimited Possibilities , 1995 .

[48]  D. Reinhoudt,et al.  Synthesis, Complexation, and Membrane Transport Studies of 1,3-Alternate Calix[4]arene-crown-6 Conformers: A New Class of Cesium Selective Ionophores , 1995 .

[49]  T. Ternes,et al.  Water analysis: emerging contaminants and current issues. , 2011, Analytical chemistry.

[50]  R. Sachleben,et al.  A new highly selective calix[4]crown-6 fluorescent caesium probe , 2000 .

[51]  M. Cho,et al.  Calix[4]arene dibenzocrown ethers as caesium selective extractants , 1999 .

[52]  P. Thuéry,et al.  A new calix[4]arene-bis(crown ether) derivative displaying an improved caesium over sodium selectivity: molecular dynamics and experimental investigation of alkali-metal ion complexation , 1999 .

[53]  R. Dabestani,et al.  Calix[4]arene-based Cs+ selective optical sensor , 1999 .

[54]  H. Hwang,et al.  Calix[4]arenes with a novel proton-ionizable group: synthesis and metal ion separations , 1998 .

[55]  Z. Asfari,et al.  BINDING PROPERTIES OF CALIX4-BIS-CROWNS TOWARDS ALKALI CATIONS , 1996 .