Geodetic SAR for Height System Unification and Sea Level Research - Observation Concept and Preliminary Results in the Baltic Sea

Traditionally, sea level is observed at tide gauge stations, which usually also serve as height reference stations for national leveling networks and therefore define a height system of a country. One of the main deficiencies to use tide gauge data for geodetic sea level research and height systems unification is that only a few stations are connected to the geometric network of a country by operating permanent GNSS receivers next to the tide gauge. As a new observation technique, absolute positioning by SAR using active transponders on ground can fill this gap by systematically observing time series of geometric heights at tide gauge stations. By additionally knowing the tide gauge geoid heights in a global height reference frame, one can finally obtain absolute sea level heights at each tide gauge. With this information the impact of climate change on the sea level can be quantified in an absolute manner and height systems can be connected across the oceans. First results from applying this technique at selected tide gauges at the Baltic coasts are promising but also exhibit some problems related to the new technique. The paper presents the concept of using the new observation type in an integrated sea level observing system and provides some early results for SAR positioning in the Baltic sea area.

[1]  Gary T. Mitchum,et al.  Estimating Mean Sea Level Change from the TOPEX and Jason Altimeter Missions , 2010 .

[2]  Gabriel Strykowski,et al.  From Discrete Gravity Survey Data to a High-resolution Gravity Field Representation in the Nordic-Baltic Region , 2017 .

[3]  X. Collilieux,et al.  Mitigating the effects of vertical land motion in tide gauge records using a state-of-the-art GPS velocity field , 2012 .

[4]  GOCO06s – a satellite-only global gravity field model , 2021 .

[5]  Szabolcs Rózsa,et al.  The Geodesist’s Handbook 2016 , 2016, Journal of Geodesy.

[6]  Marie-Noëlle Bouin,et al.  Evidence for a differential sea level rise between hemispheres over the twentieth century , 2014 .

[7]  K. Moffett,et al.  Remote Sens , 2015 .

[8]  Michael Eineder,et al.  High precision measurement on the absolute localization accuracy of TerraSAR-X , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[9]  Anny Cazenave,et al.  Sea level: A review of present-day and recent-past changes and variability , 2012 .

[10]  Edward M. Mikhail,et al.  Observations And Least Squares , 1983 .

[11]  H. Moritz Geodetic Reference System 1980 , 2000 .

[12]  M. Bouin,et al.  Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide , 2007 .

[13]  L. Sjöberg,et al.  Gravity Inversion and Integration: Theory and Applications in Geodesy and Geophysics , 2017 .

[14]  Franz Barthelmes,et al.  Definition of Functionals of the Geopotential and Their Calculation from Spherical Harmonic Models , 2009 .

[15]  A. Garcia-Rigo,et al.  The IGS VTEC maps: a reliable source of ionospheric information since 1998 , 2009 .

[16]  Tarmo Kõuts,et al.  Precise Hydrodynamic Leveling by Using Pressure Gauges , 2013 .

[17]  Lars E. Sjöberg,et al.  The new gravimetric quasigeoid model KTH08 over Sweden , 2009 .

[18]  S. Jevrejeva,et al.  The Permanent Service for Mean Sea Level , 2005 .

[19]  N. Hamano,et al.  Digital processing of synthetic aperture radar data , 1984 .

[20]  Sina Montazeri,et al.  Precise Three-Dimensional Stereo Localization of Corner Reflectors and Persistent Scatterers With TerraSAR-X , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Peter Steigenberger,et al.  Imaging Geodesy—Toward Centimeter-Level Ranging Accuracy With TerraSAR-X , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Johannes Bouman,et al.  Second-degree Stokes coefficients from multi-satellite SLR , 2015, Journal of Geodesy.

[23]  C. Gerlach,et al.  Intercontinental height datum connection with GOCE and GPS-levelling data , 2012 .

[24]  D. Small,et al.  Accurate Geometric Calibration of Sentinel-1 Data , 2018 .

[25]  Jonas Ågren,et al.  NKG2016LU: a new land uplift model for Fennoscandia and the Baltic Region , 2019, Journal of Geodesy.

[26]  Z. Altamimi,et al.  ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions , 2016 .

[27]  Guy Wöppelmann,et al.  Coastal sea level rise in southern Europe and the nonclimate contribution of vertical land motion , 2012 .

[28]  Peter Steigenberger,et al.  High resolution geodetic earth observation with TerraSAR-X: Correction schemes and validation , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[29]  Manuela Seitz,et al.  Non-linear station motions in epoch and multi-year reference frames , 2013, Journal of Geodesy.

[30]  David A. Seal,et al.  The Shuttle Radar Topography Mission , 2007 .

[31]  T. Gruber,et al.  Towards worldwide height system unification using ocean information , 2012 .

[32]  Manuela Seitz,et al.  The new DGFI-TUM realization of the ITRS: DTRF2014 (data) , 2016 .

[33]  Philip L. Woodworth,et al.  R. Player. . The Permanent Service for Mean Sea Level: An update to the 21st century. , 2003 .

[34]  Michael Eineder,et al.  Differential geodetic stereo SAR with TerraSAR-X by exploiting small multi-directional radar reflectors , 2016, Journal of Geodesy.

[35]  Franz Leberl,et al.  Radargrammetric image processing , 1990 .

[36]  Johannes Böhm,et al.  VMF3/GPT3: refined discrete and empirical troposphere mapping functions , 2017, Journal of Geodesy.

[37]  A. Ellmann,et al.  Geodetic Reconciliation of Tide Gauge Network in Estonia , 2019 .

[38]  Torsten Mayer-Gürr,et al.  GOCO06s – a satellite-only global gravity field model , 2020, Earth System Science Data.

[39]  J. Kouba Implementation and testing of the gridded Vienna Mapping Function 1 (VMF1) , 2008 .

[40]  James Foster,et al.  Space geodetic determination of spatial variability in relative sea level change, Los Angeles basin , 2007 .

[41]  N. White,et al.  Sea-Level Rise from the Late 19th to the Early 21st Century , 2011 .

[42]  Anny Cazenave,et al.  Satellite Altimetry over Oceans and Land Surfaces , 2017 .

[43]  M. Bouin,et al.  Rates of sea‐level change over the past century in a geocentric reference frame , 2009 .

[44]  Ramon F. Hanssen,et al.  On the Use of Transponders as Coherent Radar Targets for SAR Interferometry , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[45]  Richard H. Rapp,et al.  Closed Covariance Expressions for Gravity Anomalies, Geoid Undulations, and Deflections of the Vertical Implied by Anomaly Degree Variance Models. , 1974 .

[46]  Xavier Collilieux,et al.  Global sea-level rise and its relation to the terrestrial reference frame , 2009 .

[47]  Helmut Moritz,et al.  Geodetic Reference System 1980 , 1980 .

[48]  Michael B. Heflin,et al.  JTRF2014, the JPL Kalman filter and smoother realization of the International Terrestrial Reference System , 2017 .

[49]  Johannes Böhm,et al.  Refined discrete and empirical horizontal gradients in VLBI analysis , 2018, Journal of Geodesy.

[50]  Carl Christian Tscherning,et al.  Geoid Determination by 3D Least-Squares Collocation , 2013 .

[51]  Michael Eineder,et al.  In-Depth Verification of Sentinel-1 and TerraSAR-X Geolocation Accuracy Using the Australian Corner Reflector Array , 2021, IEEE Transactions on Geoscience and Remote Sensing.