Application of an empirical saturation rule to TGLF to unify low-k and high-k turbulence dominated regimes

We propose a phenomenological turbulence saturation model and apply it to the TGLF turbulence transport model (Staebler et al 2007 Phys. Plasmas 14 055909), which captures the physics of interaction between low-k and high-k turbulence consistent with the multi-scale gyro-kinetic simulation result reported by Howard (2016 Nucl. Fusion. 23 056109). The new model, TGLF-Vx is tested with three discharges from DIII-D and EAST tokamak, which cover both low-k and high-k turbulence dominated regimes. It is found that the profile match can be substantially improved over previous models when evolving Te, Ti and ne simultaneously. Good agreement for all three discharges is obtained with one fixed parameter in the model when taking experimental uncertainties into consideration. Lastly, TGLF-Vx is applied to explore the sensitivity of the predicted CFETR steady-state performance to different transport models. Our result shows that a scenario using only RF auxiliary heating could be significantly affected.

[1]  Xiang Jian,et al.  Self-consistent modeling of CFETR baseline scenarios for steady-state operation , 2017 .

[2]  G. M. Staebler,et al.  A model of the saturation of coupled electron and ion scale gyrokinetic turbulence , 2017 .

[3]  G. Staebler,et al.  Advances in the high bootstrap fraction regime on DIII-D towards the Q  =  5 mission of ITER steady state , 2017 .

[4]  L. L. Lao,et al.  EAST equilibrium current profile reconstruction using polarimeter-interferometer internal measurement constraints , 2017 .

[5]  Xiang Jian,et al.  Optimization of CFETR baseline performance by controlling rotation shear and pedestal collisionality through integrated modeling , 2017 .

[6]  G. Staebler,et al.  Investigation of energy transport in DIII-D High-βP EAST-demonstration discharges with the TGLF turbulent and NEO neoclassical transport models , 2017 .

[7]  Nan Shi,et al.  Evaluation of CFETR key parameters with different scenarios using system analysis code , 2016 .

[8]  S. Ding Confinement improvement in the high poloidal beta regime on DIII-D and application to steady-state H-mode on EAST , 2016 .

[9]  W. Dorland,et al.  Collisionality scaling of the electron heat flux in ETG turbulence , 2016, 1607.06752.

[10]  G. Staebler,et al.  The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence , 2016 .

[11]  Jeff M. Candy,et al.  Multi-scale gyrokinetic simulations: Comparison with experiment and implications for predicting turbulence and transport , 2016 .

[12]  L. L. Lao,et al.  Compatibility of internal transport barrier with steady-state operation in the high bootstrap fraction regime on DIII-D , 2015, Nuclear Fusion.

[13]  M. Nakata,et al.  Cross-Scale Interactions between Electron and Ion Scale Turbulence in a Tokamak Plasma. , 2015, Physical review letters.

[14]  J. A. Leuer,et al.  Evaluation of CFETR as a Fusion Nuclear Science Facility using multiple system codes , 2015 .

[15]  J. Kinsey,et al.  Predictions of the near edge transport shortfall in DIII-D L-mode plasmas using the trapped gyro-Landau-fluid model , 2015 .

[16]  L. Lao,et al.  Kinetic equilibrium reconstruction on EAST tokamak , 2013 .

[17]  J. Kinsey,et al.  A new paradigm for E × B velocity shear suppression of gyro-kinetic turbulence and the momentum pinch , 2013 .

[18]  J. Kinsey,et al.  New paradigm for suppression of gyrokinetic turbulence by velocity shear. , 2013, Physical review letters.

[19]  Y. Camenen,et al.  Off-diagonal particle and toroidal momentum transport: a survey of experimental, theoretical and modelling aspects , 2012 .

[20]  R. E. Waltz,et al.  ITER predictions using the GYRO verified and experimentally validated trapped gyro-Landau fluid transport model , 2011 .

[21]  J. Kinsey,et al.  Trapped gyro-Landau-fluid transport modeling of DIII-D hybrid discharges , 2010 .

[22]  Jeff M. Candy,et al.  Tokamak profile prediction using direct gyrokinetic and neoclassical simulation , 2009 .

[23]  L. Lao,et al.  Equilibrium properties on the EAST superconducting tokamak , 2009, Journal of Plasma Physics.

[24]  J. Candy,et al.  Kinetic calculation of neoclassical transport including self-consistent electron and impurity dynamics , 2008 .

[25]  R. E. Waltz,et al.  The first transport code simulations using the trapped gyro-Landau-fluid model , 2008 .

[26]  Jeff M. Candy,et al.  The effect of ion-scale dynamics on electron-temperature-gradient turbulence , 2007 .

[27]  A. Polevoi,et al.  Chapter 1: Overview and summary , 2007 .

[28]  J. Kinsey,et al.  A theory-based transport model with comprehensive physicsa) , 2006 .

[29]  T. C. Luce,et al.  Electron cyclotron current drive efficiency in general tokamak geometry , 2003 .

[30]  R. E. Waltz,et al.  An Eulerian gyrokinetic-Maxwell solver , 2003 .

[31]  Frank Jenko,et al.  Critical gradient formula for toroidal electron temperature gradient modes , 2001 .

[32]  Robert Dewar,et al.  Theory and simulation of rotational shear stabilization of turbulence , 1998 .

[33]  R. Waltz,et al.  A gyro-Landau-fluid transport model , 1997 .

[34]  F. Romanelli,et al.  The linear threshold of the ion‐temperature‐gradient‐driven mode , 1993 .

[35]  R. W. Harvey,et al.  The CQL3D Fokker-Planck code , 1992 .

[36]  L. L. Lao,et al.  Equilibrium analysis of current profiles in tokamaks , 1990 .

[37]  R. Goldston,et al.  New techniques for calculating heat and particle source rates due to neutral beam injection in axisymmetric tokamaks , 1981 .

[38]  Martin Greenwald,et al.  Multi-scale gyrokinetic simulation of tokamak plasmas: enhanced heat loss due to cross-scale coupling of plasma turbulence , 2015 .

[39]  G. Hammett,et al.  Gyrofluid simulations of turbulence suppression in reversed-shear experiments on the Tokamak Fusion Test Reactor , 1997 .