Multi-wave imaging in attenuating media

We consider a mathematical model of thermoacoustic tomography and other multi-wave imaging techniques with variable sound speed and attenuation. We find that a Neumann series reconstruction algorithm, previously studied under the assumption of zero attenuation, still converges if attenuation is sufficiently small. With complete boundary data, we show the inverse problem has a unique solution, and modified time reversal provides a stable reconstruction. We also consider partial boundary data, and in this case study those singularities that can be stably recovered.

[1]  B. Cox,et al.  Photoacoustic tomography in absorbing acoustic media using time reversal , 2010 .

[2]  Peter Kuchment,et al.  Mathematics of thermoacoustic tomography , 2007, European Journal of Applied Mathematics.

[3]  Rakesh,et al.  Determining a Function from Its Mean Values Over a Family of Spheres , 2004, SIAM J. Math. Anal..

[4]  P. Burgholzer,et al.  Efficient modeling and compensation of ultrasound attenuation losses in photoacoustic imaging , 2010 .

[5]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[6]  Hongkai Zhao,et al.  An Efficient Neumann Series-Based Algorithm for Thermoacoustic and Photoacoustic Tomography with Variable Sound Speed , 2011, SIAM J. Imaging Sci..

[7]  M. Haltmeier,et al.  Thermoacoustic Tomography - Ultrasound Attenuation Artifacts , 2006, 2006 IEEE Nuclear Science Symposium Conference Record.

[8]  P. Burgholzer,et al.  Information changes and time reversal for diffusion-related periodic fields , 2009, BiOS.

[9]  Guillaume Bal,et al.  Quantitative thermo-acoustics and related problems , 2011 .

[10]  Mark A. Anastasio,et al.  Photoacoustic image reconstruction in an attenuating medium using singular value decomposition , 2009, BiOS.

[11]  M. Czubak,et al.  PSEUDODIFFERENTIAL OPERATORS , 2020, Introduction to Partial Differential Equations.

[12]  J. Lions,et al.  Non homogeneous boundary value problems for second order hyperbolic operators , 1986 .

[13]  Josselin Garnier,et al.  Time reversal in attenuating acoustic media , 2010 .

[14]  Linh V. Nguyen,et al.  Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media , 2008 .

[15]  Patrick J La Rivière,et al.  Image reconstruction in optoacoustic tomography for dispersive acoustic media. , 2006, Optics letters.

[16]  Peter Kuchment,et al.  On the injectivity of the circular Radon transform , 2005 .

[17]  R. Kowar Integral equation models for thermoacoustic imaging of acoustic dissipative tissue , 2010, 1002.4731.

[18]  O. Scherzer,et al.  Photoacoustic imaging in attenuating acoustic media based on strongly causal models , 2012, 1211.1516.

[19]  G. Uhlmann,et al.  Thermoacoustic tomography with variable sound speed , 2009, 0902.1973.

[20]  Justin Tittelfitz Thermoacoustic tomography in elastic media , 2011, 1105.0898.

[21]  B. T. Cox,et al.  The challenges for quantitative photoacoustic imaging , 2009, BiOS.

[22]  Patrick J. La Riviere,et al.  Photoacoustic image reconstruction in an attenuating medium using singular-value decomposition , 2008, 2008 IEEE Nuclear Science Symposium Conference Record.

[23]  Yulia Hristova,et al.  Time reversal in thermoacoustic tomography—an error estimate , 2008, 0812.0606.

[24]  Lihong V. Wang,et al.  Effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced thermoacoustic tomography. , 2008, Medical physics.

[25]  Otmar Scherzer,et al.  Causality analysis of frequency-dependent wave attenuation , 2011 .

[26]  Vasilis Ntziachristos,et al.  The effects of acoustic attenuation in optoacoustic signals , 2011, Physics in medicine and biology.

[27]  Daniel Tataru,et al.  Unique continuation for operatorswith partially analytic coefficients , 1999 .