A two-grid MMOC finite element method for nonlinear variable-order time-fractional mobile/immobile advection-diffusion equations

Abstract A fully discrete two-grid modified method of characteristics (MMOC) scheme is proposed for nonlinear variable-order time-fractional advection–diffusion equations in two space dimensions. The MMOC is used to handle the advection-dominated transport and the two-grid method is designed for efficiently solving the resulting nonlinear system. Optimal L 2 error estimates are derived for both the MMOC scheme and the corresponding two-grid MMOC scheme. Numerical experiments are presented to demonstrate the accuracy and the efficiency of the proposed method.

[1]  Fawang Liu,et al.  A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model , 2013, Comput. Math. Appl..

[2]  Zhengguang Liu,et al.  A parallel CGS block-centered finite difference method for a nonlinear time-fractional parabolic equation , 2016 .

[3]  Yunqing Huang,et al.  A two‐grid method for expanded mixed finite‐element solution of semilinear reaction–diffusion equations , 2003 .

[4]  Hong Li,et al.  A two-grid finite element approximation for a nonlinear time-fractional Cable equation , 2015, 1512.08082.

[5]  Fawang Liu,et al.  Numerical Methods for the Variable-Order Fractional Advection-Diffusion Equation with a Nonlinear Source Term , 2009, SIAM J. Numer. Anal..

[6]  Bo Yu,et al.  Numerical method for the estimation of the fractional parameters in the fractional mobile/immobile advection–diffusion model , 2018, International Journal of Computational Mathematics.

[7]  Rina Schumer,et al.  Fractional Dispersion, Lévy Motion, and the MADE Tracer Tests , 2001 .

[8]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..

[9]  Zhi-Zhong Sun,et al.  Finite difference methods for the time fractional diffusion equation on non-uniform meshes , 2014, J. Comput. Phys..

[10]  Christian Cunat,et al.  Rheological constitutive equation of solids: a link between models based on irreversible thermodynamics and on fractional order derivative equations , 2003 .

[11]  Francesco Mainardi,et al.  Random walk models approximating symmetric space-fractional diffusion processes , 2012, 1210.6589.

[12]  Yang Liu,et al.  Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction-diffusion problem , 2015, Comput. Math. Appl..

[13]  K. Burrage,et al.  A new fractional finite volume method for solving the fractional diffusion equation , 2014 .

[14]  Jinchao Xu,et al.  A Novel Two-Grid Method for Semilinear Elliptic Equations , 1994, SIAM J. Sci. Comput..

[15]  Xiangcheng Zheng,et al.  Wellposedness and regularity of the variable-order time-fractional diffusion equations , 2019, Journal of Mathematical Analysis and Applications.

[16]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[17]  Jinchao Xu,et al.  Error estimates on a new nonlinear Galerkin method based on two-grid finite elements , 1995 .

[18]  J. Hesthaven,et al.  Local discontinuous Galerkin methods for fractional diffusion equations , 2013 .

[19]  Ji Ma,et al.  A robust kernel-based solver for variable-order time fractional PDEs under 2D/3D irregular domains , 2019, Appl. Math. Lett..

[20]  Yinnian He,et al.  Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems☆ , 2014 .

[21]  T. F. Russell,et al.  Time Stepping Along Characteristics with Incomplete Iteration for a Galerkin Approximation of Miscible Displacement in Porous Media , 1985 .

[22]  Yanping Chen,et al.  Two-Grid Method for Nonlinear Reaction-Diffusion Equations by Mixed Finite Element Methods , 2011, J. Sci. Comput..

[23]  Wei Liu,et al.  A Two-Grid Block-Centered Finite Difference Method For Darcy-Forchheimer Flow in Porous Media , 2015, SIAM J. Numer. Anal..

[24]  Hong Wang,et al.  An Optimal-Order Error Estimate for an ELLAM Scheme for Two-Dimensional Linear Advection-Diffusion Equations , 2000, SIAM J. Numer. Anal..

[25]  M. Allen,et al.  A two-grid method for mixed finite-element solution of reaction-diffusion equations , 1999 .

[26]  Richard E. Ewing,et al.  Simulation of miscible displacement using mixed methods and a modified method of characteristics , 1983 .

[27]  Yanping Chen,et al.  Analysis of Two-Grid Methods for Nonlinear Parabolic Equations by Expanded Mixed Finite Element Methods , 2009 .

[28]  Hong Wang,et al.  A Characteristic Domain Decomposition and Space-Time Local Refinement Method for First-Order Linear , 1998 .

[29]  Chieh-Sen Huang,et al.  The modified method of characteristics with adjusted advection , 1999, Numerische Mathematik.

[30]  Victor Ginting,et al.  Two-grid finite volume element method for linear and nonlinear elliptic problems , 2007, Numerische Mathematik.

[31]  Yang Liu,et al.  A two-grid mixed finite element method for a nonlinear fourth-order reaction-diffusion problem with time-fractional derivative , 2015, Comput. Math. Appl..

[32]  Wei Liu,et al.  A two‐grid characteristic finite volume element method for semilinear advection‐dominated diffusion equations , 2013 .

[33]  Yanping Chen,et al.  Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations , 2018, Adv. Comput. Math..

[34]  Zhangxin Chen,et al.  Characteristic-nonconforming finite-element methods for advection-dominated diffusion problems , 2004 .

[35]  Zhongqiang Zhang,et al.  A Generalized Spectral Collocation Method with Tunable Accuracy for Variable-Order Fractional Differential Equations , 2015, SIAM J. Sci. Comput..

[36]  Wei Jiang,et al.  A numerical method for solving the time variable fractional order mobile–immobile advection–dispersion model , 2017 .

[37]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[38]  Aijie Cheng,et al.  A Eulerian–Lagrangian control volume method for solute transport with anomalous diffusion , 2015 .

[39]  Mary F. Wheeler,et al.  A Two-Grid Finite Difference Scheme for Nonlinear Parabolic Equations , 1998 .

[40]  Rina Schumer,et al.  Fractal mobile/immobile solute transport , 2003 .

[41]  T. F. Russell,et al.  NUMERICAL METHODS FOR CONVECTION-DOMINATED DIFFUSION PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE ELEMENT OR FINITE DIFFERENCE PROCEDURES* , 1982 .