Principles of Protein and Lipid Targeting in Secondary Symbiogenesis: Euglenoid, Dinoflagellate, and Sporozoan Plastid Origins and the Eukaryote Family Tree 1 , 2
暂无分享,去创建一个
[1] T. Cavalier-smith,et al. Single gene circles in dinoflagellate chloroplast genomes , 1999, Nature.
[2] J. Blanchard,et al. The Non‐Photosynthetic Plastid in Malarial Parasites and Other Apicomplexans is Derived from Outside the Green Plastid Lineage 1 , 1999, The Journal of eukaryotic microbiology.
[3] T. Cavalier-smith,et al. Diversification of a Chimaeric Algal Group, the Chlorarachniophytes: Phylogeny of Nuclear and Nucleomorph Small-Subunit rRNA Genes , 1999 .
[4] R. Triemer,et al. A Molecular Study of Euglenoid Phylogeny using Small Subunit rDNA , 1999, The Journal of eukaryotic microbiology.
[5] H Philippe,et al. An evaluation of elongation factor 1 alpha as a phylogenetic marker for eukaryotes. , 1999, Molecular biology and evolution.
[6] D. Roos,et al. Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. , 1998, Proceedings of the National Academy of Sciences of the United States of America.
[7] H. Phillipe. The molecular phylogeny of eukaryota: solid facts and uncertainties , 1998 .
[8] T. Cavalier-smith,et al. A revised six‐kingdom system of life , 1998, Biological reviews of the Cambridge Philosophical Society.
[9] M. Hasegawa,et al. Gene transfer to the nucleus and the evolution of chloroplasts , 1998, Nature.
[10] P. Denny,et al. Evidence for a Single Origin of the 35 kb Plastid DNA in Apicomplexans. , 1998, Protist.
[11] D. Sankoff,et al. Genome structure and gene content in protist mitochondrial DNAs. , 1998, Nucleic acids research.
[12] M. Sogin,et al. A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.
[13] J. Palmer,et al. The Origin and Evolution of Plastids and Their Genomes , 1998 .
[14] M. Müller. What are the microsporidia? , 1997, Parasitology today.
[15] M. Hasegawa,et al. The Origin of Chlorarachniophyte Plastids, as Inferred from Phylogenetic Comparisons of Amino Acid Sequences of EF-Tu , 1997, Journal of Molecular Evolution.
[16] W. Doolittle,et al. Origin and evolution of the slime molds (Mycetozoa) , 1997, Proceedings of the National Academy of Sciences of the United States of America.
[17] D. Caron,et al. Phylogenetic relationships between the Acantharea and the Polycystinea: a molecular perspective on Haeckel's Radiolaria. , 1997, Proceedings of the National Academy of Sciences of the United States of America.
[18] A. Simpson. The identity and composition of the Euglenozoa , 1997 .
[19] A. Bodyl. Mechanism of Protein Targeting to the Chlorarachniophyte Plastids and the Evolution of Complex Plastids with Four Membranes — A Hypothesis , 1997 .
[20] T. Cavalier-smith. Sagenista and bigyra, two phyla of heterotrophic heterokont chromists , 1997 .
[21] G. McFadden,et al. Preliminary characterization of carbohydrate stores from chlorarachniophytes (Division: Chlorarachniophyta) , 1997 .
[22] T. Ohama,et al. Algae or Protozoa: Phylogenetic Position of Euglenophytes and Dinoflagellates as Inferred from Mitochondrial Sequences , 1997, Journal of Molecular Evolution.
[23] R. Triemer. FEEDING IN PERANEMA TRICHOPHORUM REVISITED (EUGLENOPHYTA) 1 , 1997 .
[24] L. Medlin,et al. Ribosomal RNA Analysis Indicates a Benthic Pennate Diatom Ancestry for the Endosymbionts of the Dinoflagellates Peridinium foliaceum and Peridinium balticum (Pyrrhophyta) , 1997, The Journal of eukaryotic microbiology.
[25] R. Triemer,et al. PHYLOGENETIC RELATIONSHIPS OF SELECTED EUGLENOID GENERA BASED ON MORPHOLOGICAL AND MOLECULAR DATA 1 , 1997 .
[26] D. Sankoff,et al. An ancestral mitochondrial DNA resembling a eubacterial genome in miniature , 1997, Nature.
[27] T. Cavalier-smith. Amoeboflagellates and mitochondrial cristae in eukaryote evolution: megasystematics of the new protozoan subkingdoms eozoa and neozoa , 1997 .
[28] T. Cavalier-smith,et al. Sarcomonad ribosomal RNA sequences, rhizopod phylogeny, and the origin of euglyphid amoebae , 1997 .
[29] J. Palmer,et al. A Plastid of Probable Green Algal Origin in Apicomplexan Parasites , 1997, Science.
[30] K. Keegstra,et al. Stable association of chloroplastic precursors with protein translocation complexes that contain proteins from both envelope membranes and a stromal Hsp100 molecular chaperone , 1997, The EMBO journal.
[31] A. Roger. Studies on the phylogeny and gene structure of early-branching eukaryotes. , 1997 .
[32] R. Andersen,et al. Small-subunit ribosomal RNA sequences from selected dinoflagellates: testing classical evolutionary hypotheses with molecular systematic methods , 1997 .
[33] W. Doolittle,et al. Alpha-tubulin from early-diverging eukaryotic lineages and the evolution of the tubulin family. , 1996, Molecular biology and evolution.
[34] T. Cavalier-smith,et al. 18S rRNA sequence of Heterosigma carterae (Raphidophyceae), and the phylogeny of heterokont algae (Ochrophyta) , 1996 .
[35] Geoffrey I. McFadden,et al. Cryptomonad nuclear and nucleomorph 18S rRNA phylogeny , 1996 .
[36] M. Strath,et al. Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. , 1996, Journal of molecular biology.
[37] T. Cavalier-smith,et al. Chromobiote phylogeny: the enigmatic alga Reticulosphaera japonensis is an aberrant haptophyte, not a heterokont , 1996 .
[38] G. McFadden,et al. The miniaturized nuclear genome of eukaryotic endosymbiont contains genes that overlap, genes that are cotranscribed, and the smallest known spliceosomal introns. , 1996, Proceedings of the National Academy of Sciences of the United States of America.
[39] Geoffrey I. McFadden,et al. Plastid in human parasites , 1996, Nature.
[40] D. Yellowlees,et al. Rubisco in marine symbiotic dinoflagellates: form II enzymes in eukaryotic oxygenic phototrophs encoded by a nuclear multigene family. , 1996, The Plant cell.
[41] T. Cavalier-smith,et al. Oikomonas, a Distinctive Zooflagellate Related to Chrysomonads , 1996 .
[42] S. Schwartzbach,et al. A soluble protein is imported into Euglena chloroplasts as a membrane-bound precursor. , 1996, The Plant cell.
[43] W. Martin,et al. A nuclear gene of eubacterial origin in Euglena gracilis reflects cryptic endosymbioses during protist evolution. , 1995, Proceedings of the National Academy of Sciences of the United States of America.
[44] D. Morse,et al. A nuclear-encoded form II RuBisCO in dinoflagellates. , 1995, Science.
[45] S. Schwartzbach,et al. The Polyprotein Precursor to the Euglena Light-harvesting Chlorophyll a/b-binding Protein Is Transported to the Golgi Apparatus Prior to Chloroplast Import and Polyprotein Processing (*) , 1995, The Journal of Biological Chemistry.
[46] T. Cavalier-smith,et al. Ribosomal RNA Evidence for Chloroplast Loss within Heterokonta: Pedinellid Relationships and a Revised Classification of Ochristan Algae , 1995 .
[47] A. Mylnikov,et al. Fine structure of an unusual Rhizopod, Penardia cometa, containing extrusomes and kinetosomes , 1995 .
[48] M. Melkonian,et al. Molecular Evolutionary Analyses of Nuclear‐Encoded Small Subunit Ribosomal RNA Identify an Independent Rhizopod Lineage Containing the Euglyphina and the Chlorarachniophyta , 1995, The Journal of eukaryotic microbiology.
[49] T. Cavalier-smith. Membrane heredity, symbiogenesis, and the multiple origins of algae , 1995 .
[50] U. Maier,et al. How to Evolve a Complex Plastid? ‐ A Hypothesis , 1994 .
[51] T. Cavalier-smith,et al. Chimeric conundra: are nucleomorphs and chromists monophyletic or polyphyletic? , 1994, Proceedings of the National Academy of Sciences of the United States of America.
[52] F. Opperdoes,et al. Novel pattern of editing regions in mitochondrial transcripts of the cryptobiid Trypanoplasma borreli. , 1994, The EMBO journal.
[53] L. Spremulli,et al. Isolation and characterization of cDNA clones for chloroplast translational initiation factor-3 from Euglena gracilis. , 1994, The Journal of biological chemistry.
[54] R. Lewin,et al. Origins of Plastids , 2012, Springer US.
[55] S. Schwartzbach,et al. The presequence of Euglena LHCPII, a cytoplasmically synthesized chloroplast protein, contains a functional endoplasmic reticulum-targeting domain. , 1993, Proceedings of the National Academy of Sciences of the United States of America.
[56] T. Cavalier-smith,et al. Kingdom protozoa and its 18 phyla. , 1993, Microbiological reviews.
[57] C. O'kelly. The Jakobid Flagellates: Structural Features of Jakoba, Reclinomonas and Histiona and Implications for the Early Diversification of Eukaryotes , 1993 .
[58] A. Monfort,et al. Complete sequence of Euglena gracilis chloroplast DNA. , 1993, Nucleic acids research.
[59] J. Marrs,et al. The two major membrane skeletal proteins (articulins) of Euglena gracilis define a novel class of cytoskeletal proteins , 1992, The Journal of cell biology.
[60] L. S. Shashidhara,et al. Protein targeting across the three membranes of the Euglena chloroplast envelope. , 1992, The Journal of biological chemistry.
[61] J. Palmer. Green ancestry of malarial parasites? , 1992, Current Biology.
[62] E. Schnepf. From Prey via Endosymbiont to Plastid: Comparative Studies in Dinoflagellates , 1992 .
[63] T. Cavalier-smith. The Origin, Losses and Gains of Chloroplasts , 1992 .
[64] T. Cavalier-smith. The number of symbiotic origins of organelles. , 1992, Bio Systems.
[65] T. Osafune,et al. Stage-dependent localization of LHCP II apoprotein in the Golgi of synchronized cells of Euglena gracilis by immunogold electron microscopy. , 1991, Experimental cell research.
[66] M. Sogin,et al. Ribosomal RNA sequences of Sarcocystis muris, Theileria annulata and Crypthecodinium cohnii reveal evolutionary relationships among apicomplexans, dinoflagellates, and ciliates. , 1991, Molecular and biochemical parasitology.
[67] T. Osafune,et al. Immunolocalization of LHCP II Apoprotein in the Golgi during Light-induced Chloroplast Development in Non-dividing Euglena Cells , 1991 .
[68] T. Cavalier-smith. The Evolution of Cells , 1991 .
[69] Miklós Müller. Biochemistry of Trichomonas vaginalis , 1990 .
[70] S. P. Gibbs,et al. EVIDENCE THAT THE NUCLEOMORPHS OF CHLORARACHNION REPTANS (CHLORARACHNIOPHYCEAE) ARE VESTIGIAL NUCLEI: MORPHOLOGY, DIVISION AND DNA‐DAPI FLUORESCENCE 1 , 1989 .
[71] K. Keegstra. Transport and routing of proteins into chloroplasts , 1989, Cell.
[72] T. C. Smith. The kingdom Chromista. , 1989 .
[73] T. Cavalier-smith. The Origin of Eukaryote and Archaebacterial Cells , 1987, Annals of the New York Academy of Sciences.
[74] T. Cavalier-smith. The kingdom Chromista: Origin and systematics , 1986 .
[75] W. Reisser,et al. Comparative freeze-fracture study of perialgal and digestive vacuoles in Paramecium bursaria. , 1984, Journal of cell science.
[76] D. Hibberd,et al. CYTOLOGY AND ULTRASTRUCTURE OF CHLORARACHNION REPTANS (CHLORARACHNIOPHYTA DIVISIO NOVA, CHLORARACHNIOPHYCEAE CLASSIS NOVA) 1 , 1984 .
[77] M. Lefort-Tran. The Triple Layered Organization of the Euglena Chloroplast Envelope (Signification and Functions) , 1981, Berichte der Deutschen Botanischen Gesellschaft.
[78] S. P. Gibbs. THE CHLOROPLASTS OF SOME ALGAL GROUPS MAY HAVE EVOLVED FROM ENDOSYMBIOTIC EUKARYOTIC ALGAE , 1981, Annals of the New York Academy of Sciences.
[79] M. O. Dayhoff,et al. EVIDENCE ON THE ORIGIN OF EUKARYOTIC MITOCHONDRIA FROM PROTEIN AND NUCLEIC ACID SEQUENCES * , 1981, Annals of the New York Academy of Sciences.
[80] S. P. Gibbs. The Chloroplast Endoplasmic Reticulum: Structure, Function, and Evolutionary Significance , 1981 .
[81] T. Cavalier-smith,et al. Eukaryote kingdoms: seven or nine? , 1981, Bio Systems.
[82] J. M. Whatley,et al. From extracellular to intracellular: the establishment of mitochondria and chloroplasts , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[83] J. Dodge. 2 – The Phytoflagellates: Fine Structure and Phylogeny , 1979 .
[84] J. Felsenstein. Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .
[85] S. P. Gibbs,et al. The chloroplasts of Euglena may have evolved from symbiotic green algae , 1978 .
[86] N. D. Levine. Perkinsus gen.n. and other new taxa in the protozoan phylum Apicomplexa , 1978 .
[87] T. Cavalier-smith,et al. The evolutionary origin and phylogeny of microtubules, mitotic spindles and eukaryote flagella. , 1978, Bio Systems.
[88] A. R. Loeblich,et al. An optimal growth medium for the dinoflagellate Crypthecodinium cohnii , 1975 .
[89] J. Corliss. Common Sense and Courtesy in Nomenclatural Taxonomy , 1972 .
[90] D. Taylor. A multiple origin for plastids and mitochondria. , 1970, Science.
[91] G. B. Bouck,et al. FINE STRUCTURE AND ORGANELLE ASSOCIATIONS IN BROWN ALGAE , 1965, The Journal of cell biology.