Principles of Protein and Lipid Targeting in Secondary Symbiogenesis: Euglenoid, Dinoflagellate, and Sporozoan Plastid Origins and the Eukaryote Family Tree 1 , 2

The biggest unsolved problems in chloroplast evolution are the origins of dinoflagellate and euglenoid chloroplasts, which have envelopes of three membranes not two like plants and chromists, and of the sporozoan plastid, bounded by four smooth membranes. I review evidence that all three of these protozoan plastid types originated by secondary symbiogenesis from eukaryotic endosymbionts. Instead of separate symbiogenetic events, I argue that dinoflagellate and sporozoan plastids are directly related and that the common ancestor of dinoflagellates and Sporozoa was photosynthetic. I suggest that the last common ancestor of all Alveolata was photosynthetic and acquired its chlorophyll c‐containing plastids in the same endosymbiogenetic event as those of Chromista. Chromista and Alveolata are postulated to be a clade designated chromalveolates. I propose that euglenoids obtained their plastids from the same (possibly ulvophycean) green alga as chlorarachneans and that Discicristata (Euglenozoa plus Percolozoa) and Cercozoa (the group including chlorarachneans) form a clade designated cabozoa (protozoa with chlorophyll a + b). If both theories are correct, there were only two secondary symbiogenetic events (witnessed by the chlorarachnean and cryptomonad nucleomorphs) in the history of life, not seven as commonly assumed. This greatly reduces the postulated number of independent origins of chloroplast protein‐targeting machinery and of gene transfers from endosymbiont to host nuclei. I discuss the membrane and plastid losses and innovations in protein targeting implied by these theories, the comparative evidence for them, and their implications for eukaryote megaphylogeny. The principle of evolutionary conservatism leads to a novel theory for the function of periplastid vesicles in membrane biogenesis of chlorarachneans and chromists and of the key steps in secondary symbiogenesis. Protozoan classification is also slightly revised by abandoning the probably polyphyletic infrakingdom Actinopoda, grouping Foraminifera and Radiolaria as a new infrakingdom Retaria, placing Heliozoa within a revised infrakingdom Sarcomastigota, establishing a new flagellate phylum Loukozoa for Jakobea plus Anaeromonadea within an emended subkingdom Eozoa, and ranking Archezoa as an infrakingdom within Eozoa.

[1]  T. Cavalier-smith,et al.  Single gene circles in dinoflagellate chloroplast genomes , 1999, Nature.

[2]  J. Blanchard,et al.  The Non‐Photosynthetic Plastid in Malarial Parasites and Other Apicomplexans is Derived from Outside the Green Plastid Lineage 1 , 1999, The Journal of eukaryotic microbiology.

[3]  T. Cavalier-smith,et al.  Diversification of a Chimaeric Algal Group, the Chlorarachniophytes: Phylogeny of Nuclear and Nucleomorph Small-Subunit rRNA Genes , 1999 .

[4]  R. Triemer,et al.  A Molecular Study of Euglenoid Phylogeny using Small Subunit rDNA , 1999, The Journal of eukaryotic microbiology.

[5]  H Philippe,et al.  An evaluation of elongation factor 1 alpha as a phylogenetic marker for eukaryotes. , 1999, Molecular biology and evolution.

[6]  D. Roos,et al.  Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[7]  H. Phillipe The molecular phylogeny of eukaryota: solid facts and uncertainties , 1998 .

[8]  T. Cavalier-smith,et al.  A revised six‐kingdom system of life , 1998, Biological reviews of the Cambridge Philosophical Society.

[9]  M. Hasegawa,et al.  Gene transfer to the nucleus and the evolution of chloroplasts , 1998, Nature.

[10]  P. Denny,et al.  Evidence for a Single Origin of the 35 kb Plastid DNA in Apicomplexans. , 1998, Protist.

[11]  D. Sankoff,et al.  Genome structure and gene content in protist mitochondrial DNAs. , 1998, Nucleic acids research.

[12]  M. Sogin,et al.  A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[13]  J. Palmer,et al.  The Origin and Evolution of Plastids and Their Genomes , 1998 .

[14]  M. Müller What are the microsporidia? , 1997, Parasitology today.

[15]  M. Hasegawa,et al.  The Origin of Chlorarachniophyte Plastids, as Inferred from Phylogenetic Comparisons of Amino Acid Sequences of EF-Tu , 1997, Journal of Molecular Evolution.

[16]  W. Doolittle,et al.  Origin and evolution of the slime molds (Mycetozoa) , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[17]  D. Caron,et al.  Phylogenetic relationships between the Acantharea and the Polycystinea: a molecular perspective on Haeckel's Radiolaria. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[18]  A. Simpson The identity and composition of the Euglenozoa , 1997 .

[19]  A. Bodyl Mechanism of Protein Targeting to the Chlorarachniophyte Plastids and the Evolution of Complex Plastids with Four Membranes — A Hypothesis , 1997 .

[20]  T. Cavalier-smith Sagenista and bigyra, two phyla of heterotrophic heterokont chromists , 1997 .

[21]  G. McFadden,et al.  Preliminary characterization of carbohydrate stores from chlorarachniophytes (Division: Chlorarachniophyta) , 1997 .

[22]  T. Ohama,et al.  Algae or Protozoa: Phylogenetic Position of Euglenophytes and Dinoflagellates as Inferred from Mitochondrial Sequences , 1997, Journal of Molecular Evolution.

[23]  R. Triemer FEEDING IN PERANEMA TRICHOPHORUM REVISITED (EUGLENOPHYTA) 1 , 1997 .

[24]  L. Medlin,et al.  Ribosomal RNA Analysis Indicates a Benthic Pennate Diatom Ancestry for the Endosymbionts of the Dinoflagellates Peridinium foliaceum and Peridinium balticum (Pyrrhophyta) , 1997, The Journal of eukaryotic microbiology.

[25]  R. Triemer,et al.  PHYLOGENETIC RELATIONSHIPS OF SELECTED EUGLENOID GENERA BASED ON MORPHOLOGICAL AND MOLECULAR DATA 1 , 1997 .

[26]  D. Sankoff,et al.  An ancestral mitochondrial DNA resembling a eubacterial genome in miniature , 1997, Nature.

[27]  T. Cavalier-smith Amoeboflagellates and mitochondrial cristae in eukaryote evolution: megasystematics of the new protozoan subkingdoms eozoa and neozoa , 1997 .

[28]  T. Cavalier-smith,et al.  Sarcomonad ribosomal RNA sequences, rhizopod phylogeny, and the origin of euglyphid amoebae , 1997 .

[29]  J. Palmer,et al.  A Plastid of Probable Green Algal Origin in Apicomplexan Parasites , 1997, Science.

[30]  K. Keegstra,et al.  Stable association of chloroplastic precursors with protein translocation complexes that contain proteins from both envelope membranes and a stromal Hsp100 molecular chaperone , 1997, The EMBO journal.

[31]  A. Roger Studies on the phylogeny and gene structure of early-branching eukaryotes. , 1997 .

[32]  R. Andersen,et al.  Small-subunit ribosomal RNA sequences from selected dinoflagellates: testing classical evolutionary hypotheses with molecular systematic methods , 1997 .

[33]  W. Doolittle,et al.  Alpha-tubulin from early-diverging eukaryotic lineages and the evolution of the tubulin family. , 1996, Molecular biology and evolution.

[34]  T. Cavalier-smith,et al.  18S rRNA sequence of Heterosigma carterae (Raphidophyceae), and the phylogeny of heterokont algae (Ochrophyta) , 1996 .

[35]  Geoffrey I. McFadden,et al.  Cryptomonad nuclear and nucleomorph 18S rRNA phylogeny , 1996 .

[36]  M. Strath,et al.  Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. , 1996, Journal of molecular biology.

[37]  T. Cavalier-smith,et al.  Chromobiote phylogeny: the enigmatic alga Reticulosphaera japonensis is an aberrant haptophyte, not a heterokont , 1996 .

[38]  G. McFadden,et al.  The miniaturized nuclear genome of eukaryotic endosymbiont contains genes that overlap, genes that are cotranscribed, and the smallest known spliceosomal introns. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Geoffrey I. McFadden,et al.  Plastid in human parasites , 1996, Nature.

[40]  D. Yellowlees,et al.  Rubisco in marine symbiotic dinoflagellates: form II enzymes in eukaryotic oxygenic phototrophs encoded by a nuclear multigene family. , 1996, The Plant cell.

[41]  T. Cavalier-smith,et al.  Oikomonas, a Distinctive Zooflagellate Related to Chrysomonads , 1996 .

[42]  S. Schwartzbach,et al.  A soluble protein is imported into Euglena chloroplasts as a membrane-bound precursor. , 1996, The Plant cell.

[43]  W. Martin,et al.  A nuclear gene of eubacterial origin in Euglena gracilis reflects cryptic endosymbioses during protist evolution. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[44]  D. Morse,et al.  A nuclear-encoded form II RuBisCO in dinoflagellates. , 1995, Science.

[45]  S. Schwartzbach,et al.  The Polyprotein Precursor to the Euglena Light-harvesting Chlorophyll a/b-binding Protein Is Transported to the Golgi Apparatus Prior to Chloroplast Import and Polyprotein Processing (*) , 1995, The Journal of Biological Chemistry.

[46]  T. Cavalier-smith,et al.  Ribosomal RNA Evidence for Chloroplast Loss within Heterokonta: Pedinellid Relationships and a Revised Classification of Ochristan Algae , 1995 .

[47]  A. Mylnikov,et al.  Fine structure of an unusual Rhizopod, Penardia cometa, containing extrusomes and kinetosomes , 1995 .

[48]  M. Melkonian,et al.  Molecular Evolutionary Analyses of Nuclear‐Encoded Small Subunit Ribosomal RNA Identify an Independent Rhizopod Lineage Containing the Euglyphina and the Chlorarachniophyta , 1995, The Journal of eukaryotic microbiology.

[49]  T. Cavalier-smith Membrane heredity, symbiogenesis, and the multiple origins of algae , 1995 .

[50]  U. Maier,et al.  How to Evolve a Complex Plastid? ‐ A Hypothesis , 1994 .

[51]  T. Cavalier-smith,et al.  Chimeric conundra: are nucleomorphs and chromists monophyletic or polyphyletic? , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[52]  F. Opperdoes,et al.  Novel pattern of editing regions in mitochondrial transcripts of the cryptobiid Trypanoplasma borreli. , 1994, The EMBO journal.

[53]  L. Spremulli,et al.  Isolation and characterization of cDNA clones for chloroplast translational initiation factor-3 from Euglena gracilis. , 1994, The Journal of biological chemistry.

[54]  R. Lewin,et al.  Origins of Plastids , 2012, Springer US.

[55]  S. Schwartzbach,et al.  The presequence of Euglena LHCPII, a cytoplasmically synthesized chloroplast protein, contains a functional endoplasmic reticulum-targeting domain. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[56]  T. Cavalier-smith,et al.  Kingdom protozoa and its 18 phyla. , 1993, Microbiological reviews.

[57]  C. O'kelly The Jakobid Flagellates: Structural Features of Jakoba, Reclinomonas and Histiona and Implications for the Early Diversification of Eukaryotes , 1993 .

[58]  A. Monfort,et al.  Complete sequence of Euglena gracilis chloroplast DNA. , 1993, Nucleic acids research.

[59]  J. Marrs,et al.  The two major membrane skeletal proteins (articulins) of Euglena gracilis define a novel class of cytoskeletal proteins , 1992, The Journal of cell biology.

[60]  L. S. Shashidhara,et al.  Protein targeting across the three membranes of the Euglena chloroplast envelope. , 1992, The Journal of biological chemistry.

[61]  J. Palmer Green ancestry of malarial parasites? , 1992, Current Biology.

[62]  E. Schnepf From Prey via Endosymbiont to Plastid: Comparative Studies in Dinoflagellates , 1992 .

[63]  T. Cavalier-smith The Origin, Losses and Gains of Chloroplasts , 1992 .

[64]  T. Cavalier-smith The number of symbiotic origins of organelles. , 1992, Bio Systems.

[65]  T. Osafune,et al.  Stage-dependent localization of LHCP II apoprotein in the Golgi of synchronized cells of Euglena gracilis by immunogold electron microscopy. , 1991, Experimental cell research.

[66]  M. Sogin,et al.  Ribosomal RNA sequences of Sarcocystis muris, Theileria annulata and Crypthecodinium cohnii reveal evolutionary relationships among apicomplexans, dinoflagellates, and ciliates. , 1991, Molecular and biochemical parasitology.

[67]  T. Osafune,et al.  Immunolocalization of LHCP II Apoprotein in the Golgi during Light-induced Chloroplast Development in Non-dividing Euglena Cells , 1991 .

[68]  T. Cavalier-smith The Evolution of Cells , 1991 .

[69]  Miklós Müller Biochemistry of Trichomonas vaginalis , 1990 .

[70]  S. P. Gibbs,et al.  EVIDENCE THAT THE NUCLEOMORPHS OF CHLORARACHNION REPTANS (CHLORARACHNIOPHYCEAE) ARE VESTIGIAL NUCLEI: MORPHOLOGY, DIVISION AND DNA‐DAPI FLUORESCENCE 1 , 1989 .

[71]  K. Keegstra Transport and routing of proteins into chloroplasts , 1989, Cell.

[72]  T. C. Smith The kingdom Chromista. , 1989 .

[73]  T. Cavalier-smith The Origin of Eukaryote and Archaebacterial Cells , 1987, Annals of the New York Academy of Sciences.

[74]  T. Cavalier-smith The kingdom Chromista: Origin and systematics , 1986 .

[75]  W. Reisser,et al.  Comparative freeze-fracture study of perialgal and digestive vacuoles in Paramecium bursaria. , 1984, Journal of cell science.

[76]  D. Hibberd,et al.  CYTOLOGY AND ULTRASTRUCTURE OF CHLORARACHNION REPTANS (CHLORARACHNIOPHYTA DIVISIO NOVA, CHLORARACHNIOPHYCEAE CLASSIS NOVA) 1 , 1984 .

[77]  M. Lefort-Tran The Triple Layered Organization of the Euglena Chloroplast Envelope (Signification and Functions) , 1981, Berichte der Deutschen Botanischen Gesellschaft.

[78]  S. P. Gibbs THE CHLOROPLASTS OF SOME ALGAL GROUPS MAY HAVE EVOLVED FROM ENDOSYMBIOTIC EUKARYOTIC ALGAE , 1981, Annals of the New York Academy of Sciences.

[79]  M. O. Dayhoff,et al.  EVIDENCE ON THE ORIGIN OF EUKARYOTIC MITOCHONDRIA FROM PROTEIN AND NUCLEIC ACID SEQUENCES * , 1981, Annals of the New York Academy of Sciences.

[80]  S. P. Gibbs The Chloroplast Endoplasmic Reticulum: Structure, Function, and Evolutionary Significance , 1981 .

[81]  T. Cavalier-smith,et al.  Eukaryote kingdoms: seven or nine? , 1981, Bio Systems.

[82]  J. M. Whatley,et al.  From extracellular to intracellular: the establishment of mitochondria and chloroplasts , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[83]  J. Dodge 2 – The Phytoflagellates: Fine Structure and Phylogeny , 1979 .

[84]  J. Felsenstein Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .

[85]  S. P. Gibbs,et al.  The chloroplasts of Euglena may have evolved from symbiotic green algae , 1978 .

[86]  N. D. Levine Perkinsus gen.n. and other new taxa in the protozoan phylum Apicomplexa , 1978 .

[87]  T. Cavalier-smith,et al.  The evolutionary origin and phylogeny of microtubules, mitotic spindles and eukaryote flagella. , 1978, Bio Systems.

[88]  A. R. Loeblich,et al.  An optimal growth medium for the dinoflagellate Crypthecodinium cohnii , 1975 .

[89]  J. Corliss Common Sense and Courtesy in Nomenclatural Taxonomy , 1972 .

[90]  D. Taylor A multiple origin for plastids and mitochondria. , 1970, Science.

[91]  G. B. Bouck,et al.  FINE STRUCTURE AND ORGANELLE ASSOCIATIONS IN BROWN ALGAE , 1965, The Journal of cell biology.