Quasielastic backscattering and barrier distribution for the weakly bound projectile Li6 on Tb159

The excitation function for quasielastic scattering of the weakly bound projectile $^{6}\mathrm{Li}$ on a $^{159}\mathrm{Tb}$ target, at large backward angle, has been measured at energies around the Coulomb barrier. The corresponding quasielastic barrier distribution has been extracted from the experimental cross sections, both including and excluding the $\ensuremath{\alpha}$ particles produced in the reaction. The quasielastic scattering cross sections, excluding the $\ensuremath{\alpha}$ particles, have been analyzed in the framework of coupled channels calculations. The centroid of the quasielastic barrier distribution, including the $\ensuremath{\alpha}$ particles, is found to shift towards higher energy relative to the centroid of the fusion barrier distribution for the system. This has been attributed to the low $\ensuremath{\alpha}$-breakup threshold of the nucleus $^{6}\mathrm{Li}$.

[1]  K. Mahata,et al.  Large back-angle quasielastic scattering for Li7+Tb159 , 2021, 2101.02878.

[2]  K. Mahata,et al.  Barrier distribution for the weakly bound stable projectile Li7 with the medium-mass target nucleus Ni64 , 2020 .

[3]  R. G. Pillay,et al.  Barrier distribution functions for the system 6 Li+ 64 Ni and the effect of channel coupling , 2015 .

[4]  A. Saxena,et al.  Fusion barrier distributions in Li 6 , 7 + Bi 209 reactions from quasi-elastic and fusion excitation function measurements , 2014 .

[5]  R. G. Pillay,et al.  Fusion and quasi-elastic scattering in the Li6,7 + Au197 systems , 2014 .

[6]  Subinit Roy,et al.  Importance of the 1n-stripping process in the 6 Li + 159 Tb reaction , 2013, 1312.2741.

[7]  D. H. Luong,et al.  Predominance of transfer in triggering breakup in sub-barrier reactions of 6,7Li with 144Sm, 207,208Pb, and 209Bi , 2013 .

[8]  E. Strano,et al.  Quasielastic backscattering and barrier distributions for the 6, 7Li + 64Zn systems , 2013 .

[9]  E. Strano,et al.  Quasi-elastic backscattering of 6,7Li on light, medium and heavy targets at near- and sub-barrier energies , 2012 .

[10]  S. Kailas,et al.  Disentangling reaction mechanisms for α production in the 6 Li + 209 Bi reaction , 2012 .

[11]  P. Chowdhury,et al.  Fusion of {sup 6}Li with {sup 159}Tb at near-barrier energies , 2011, 1106.2043.

[12]  D. H. Luong,et al.  Insights into the mechanisms and time-scales of breakup of 6,7 Li , 2011 .

[13]  A. J. Pacheco,et al.  Breakup excitation function at backward angles from a-spectra in the 6Li + 144Sm system , 2011 .

[14]  D. Filipescu,et al.  Probing the potential and reaction coupling effects of 6,7Li + 28Si at sub- and near-barrier energies with elastic backscattering , 2010 .

[15]  F. Yang,et al.  Barrier distribution from {sup 9}Be+{sup 208}Pb quasielastic scattering: Breakup effects in the interaction processes , 2010 .

[16]  J. Lubian,et al.  Interpretation of quasi-elastic barrier distributions for weakly bound systems , 2009 .

[17]  A. J. Pacheco,et al.  Breakup coupling effects on near-barrier quasi-elastic scattering of {sup 6,7}Li on {sup 144}Sm , 2009 .

[18]  D. Filipescu,et al.  Elastic backscattering measurements for Li6+Si28 at sub- and near-barrier energies , 2009 .

[19]  R. Choudhury,et al.  Quasi-elastic scattering in theLi6+Th232reaction , 2009 .

[20]  A. J. Pacheco,et al.  Near- and subbarrier elastic and quasielastic scattering of the weakly bound {sup 6}Li projectile on {sup 144}Sm , 2009 .

[21]  V. Zagrebaev What does really mean the "barrier distribution function" derived from backward angle quasi-elastic scattering , 2008, 0807.4856.

[22]  S. Mitsuoka,et al.  Barrier distributions derived from quasielastic backscattering of 48Ti, 54Cr, 56Fe, 64Ni, and 70Zn projectiles on a 208Pb target. , 2007, Physical review letters.

[23]  F. Yang,et al.  Effects of breakup of weakly bound projectile and neutron transfer on fusion reactions around Coulomb barrier , 2007 .

[24]  A. Diaz-Torres,et al.  Coupled-channel effects in elastic scattering and near-barrier fusion induced by weakly bound nuclei and exotic halo nuclei , 2007, nucl-th/0703085.

[25]  R. Donangelo,et al.  Fusion and breakup of weakly bound nuclei , 2006 .

[26]  S. Kailas,et al.  Evidence for transfer followed by breakup in 7Li + 65Cu , 2005, nucl-ex/0512032.

[27]  A. Budzanowski,et al.  Li 7 + B 11 elastic and inelastic scattering in a coupled-reaction-channels approach , 2005 .

[28]  K. Hagino,et al.  Large-angle scattering and quasielastic barrier distributions , 2004, nucl-th/0402060.

[29]  K. Hagino,et al.  A program for coupled-channel calculations with all order couplings for heavy-ion fusion reactions , 1999, nucl-th/9903074.

[30]  A. Stefanini,et al.  MEASURING BARRIERS TO FUSION , 1998 .

[31]  R. Lemmon,et al.  Probing fusion barrier distributions with quasi-elastic scattering , 1995 .

[32]  H. Bohlen,et al.  Double-folding model for heavy-ion optical potential: Revised and applied to study 12C and 16O elastic scattering. , 1994, Physical review. C, Nuclear physics.

[33]  W. Oertzen,et al.  A nuclear matter study using the density dependent M3Y interaction , 1993 .

[34]  N. Rowley,et al.  On the “distribution of barriers” interpretation of heavy-ion fusion , 1991 .

[35]  Ian J. Thompson,et al.  Coupled reaction channels calculations in nuclear physics , 1988 .

[36]  J. Cook Global optical-model potentials for the elastic scattering of 6, 7Li projectiles☆ , 1982 .

[37]  A. Gavron Statistical model calculations in heavy ion reactions , 1980 .

[38]  G. R. Satchler,et al.  Folding model potentials from realistic interactions for heavy-ion scattering , 1979 .

[39]  L. Goldfarb,et al.  Systematics of nucleon transfer between heavy ions at low energies , 1971 .

[40]  Friedrich Eigenbrod Untersuchung der vier ersten angeregten Zustände des6Li-Kernes durch Elektronenstreuung , 1969 .

[41]  S. Mark,et al.  DWBA analysis of 6Li(p, d)5Li and 7Li(p, d)6Li reactions at 100 MeV☆ , 1969 .

[42]  F. D. Becchetti,et al.  NUCLEON--NUCLEUS OPTICAL MODEL PARAMETERS, A > 40, E < 50 MeV. , 1969 .