Digital planarity - A review

Digital planarity is defined by digitizing Euclidean planes in the three-dimensional digital space of voxels; voxels are given either in the grid-point or the grid-cube model. The paper summarizes results (also including most of the proofs) about different aspects of digital planarity, such as supporting or separating Euclidean planes, characterizations in arithmetic geometry, periodicity, connectivity, and algorithmic solutions. The paper provides a uniform presentation, which further extends and details a recent book chapter in [R. Klette, A. Rosenfeld, Digital Geometry-Geometric Methods for Digital Picture Analysis, Morgan Kaufmann, San Francisco, 2004].

[1]  Isabelle Debled-Rennesson,et al.  An elementary digital plane recognition algorithm , 2005, Discret. Appl. Math..

[2]  Valérie Berthé,et al.  Suites doubles de basse complexité , 2000 .

[3]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[4]  Valentin E. Brimkov,et al.  Minimally Thin Discrete Triangulation , 2000, Volume Graphics.

[5]  Chiara Epifanio,et al.  On a conjecture on bidimensional words , 2003, Theor. Comput. Sci..

[6]  Ivan Stojmenovic,et al.  A Parametrization of Digital Planes by Least-Squares Fits and Generalizations , 1996, CVGIP Graph. Model. Image Process..

[7]  Valentin E. Brimkov,et al.  Digital , 2015, Bankmagazin.

[8]  Azriel Rosenfeld,et al.  Digital geometry - geometric methods for digital picture analysis , 2004 .

[9]  Solomon Eyal Shimony,et al.  3D scan-conversion algorithms for voxel-based graphics , 1987, I3D '86.

[10]  Valentin E. Brimkov,et al.  Connectivity of discrete planes , 2004, Theor. Comput. Sci..

[11]  Lilian Buzer An Incremental Linear Time Algorithm for Digital Line and Plane Recognition Using a Linear Incremental Feasibility Problem , 2002, DGCI.

[12]  Peter Veelaert,et al.  On the flatness of digital hyperplanes , 1993, Journal of Mathematical Imaging and Vision.

[13]  Pierre Arnoux,et al.  Tilings, Quasicrystals, Discrete Planes, Generalized Substitutions, and Multidimensional Continued Fractions , 2001, DM-CCG.

[14]  Valérie Berthé,et al.  Balance properties of multi-dimensional words , 2002, Theor. Comput. Sci..

[15]  Jean Françon,et al.  Polyhedrization of the Boundary of a Voxel Object , 1999, DGCI.

[16]  Eric Andres,et al.  Tunnel‐Free Supercover 3D Polygons and Polyhedra , 1997 .

[17]  Yan Gérard Local Configurations of Digital Hyperplanes , 1999, DGCI.

[18]  Ivan Stojmenovic,et al.  On the recognition of digital planes in three-dimensional space , 1991, Pattern Recognit. Lett..

[19]  R. Brons,et al.  Linguistic Methods for the Description of a Straight Line on a Grid , 1974, Comput. Graph. Image Process..

[20]  Nimrod Megiddo,et al.  Linear-time algorithms for linear programming in R3 and related problems , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[21]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[22]  Jacques-Olivier Lachaud,et al.  Continuous Analogs of Digital Boundaries: A Topological Approach to Iso-Surfaces , 2000, Graph. Model..

[23]  Jean-Maurice Schramm,et al.  Coplanar Tricubes , 1997, DGCI.

[24]  Søren Forchhammer,et al.  Digital plane and grid point segments , 1989, Comput. Vis. Graph. Image Process..

[25]  Valentin E. Brimkov,et al.  Graceful planes and lines , 2002, Theor. Comput. Sci..

[26]  Laurent Vuillon,et al.  Combinatoire des motifs d'une suite sturmienne bidimensionnelle , 1998, Theor. Comput. Sci..

[27]  K. Voss Discrete Images, Objects, and Functions in Zn , 1993 .

[28]  Nimrod Megiddo,et al.  Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.

[29]  Eric Andres,et al.  Discrete Analytical Hyperplanes , 1997, CVGIP Graph. Model. Image Process..

[30]  Jeffrey Shallit,et al.  Automatic Sequences: Theory, Applications, Generalizations , 2003 .

[31]  Luca Q. Zamboni,et al.  Periodicity and local complexity , 2004, Theor. Comput. Sci..

[32]  Jean-Marc Chassery,et al.  Coexistence of Tricubes in Digital Naive Plane , 1997, DGCI.

[33]  Reinhard Klette,et al.  Digital Planar Segment Based Polyhedrization for Surface Area Estimation , 2001, IWVF.

[34]  Reinhard Klette,et al.  Curves, Hypersurfaces, and Good Pairs of Adjacency Relations , 2004, IWCIA.

[35]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[36]  Isabelle Debled-Rennesson,et al.  Etude et reconnaissance des droites et plans discrets , 1995 .

[37]  Arie E. Kaufman,et al.  An Algorithm for 3D Scan-Conversion of Polygons , 1987, Eurographics.

[38]  Jean Berstel Review of "Automatic sequences: theory, applications, generalizations" by Jean-Paul Allouche and Jeffrey Shallit. Cambridge University Press. , 2004, SIGA.

[39]  Alfred M. Bruckstein,et al.  On Recursive, O(N) Partitioning of a Digitized Curve into Digital Straight Segments , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Laurent Vuillon Combinatorics of patterns of a bidimensional Sturmian sequence. , 1998 .

[41]  Isabelle Debled-Rennesson,et al.  New approach to digital planes , 1995, Other Conferences.

[42]  Laurent Vuillon,et al.  Palindromes and Two-Dimensional Sturmian Sequences , 2001, J. Autom. Lang. Comb..

[43]  O. Figueiredo,et al.  A Contribution to 3D Digital Lines , 1995 .

[44]  Daniel Cohen-Or,et al.  Volume graphics , 1993, Computer.

[45]  Arnold W. M. Smeulders,et al.  Discrete Representation of Straight Lines , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Azriel Rosenfeld,et al.  Digital straightness , 2001, IWCIA.

[47]  Gabor T. Herman,et al.  The theory, design, implementation and evaluation of a three-dimensional surface detection algorithm , 1980, SIGGRAPH '80.

[48]  Peter Veelaert Digital Planarity of Rectangular Surface Segments , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Jean-Marc Chassery,et al.  Digital plane preimage structure , 2003, Electron. Notes Discret. Math..

[50]  G. A. Hedlund,et al.  Symbolic Dynamics II. Sturmian Trajectories , 1940 .

[51]  W. Blankinship A New Version of the Euclidean Algorith , 1963 .

[52]  Jean-Marc Chassery,et al.  Recognition of Digital Naive Planes and Polyhedrization , 2000, DGCI.

[53]  Azriel Rosenfeld,et al.  Convex Digital Solids , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  Valentin E. Brimkov,et al.  Plane digitization and related combinatorial problems , 2005, Discret. Appl. Math..

[55]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[56]  P. A. B. Pleasants,et al.  Characterization of two-distance sequences , 1992 .

[57]  Eric Andres,et al.  Object discretizations in higher dimensions , 2002, Pattern Recognit. Lett..

[58]  Jean-Pierre Reveillès Géométrie discrète, calcul en nombres entiers et algorithmique , 1991 .

[59]  Komei Fukuda,et al.  Double Description Method Revisited , 1995, Combinatorics and Computer Science.

[60]  Chul E. Kim Three-Dimensional Digital Planes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[61]  Jean-Pierre Reveilles,et al.  Combinatorial pieces in digital lines and planes , 1995, Optics & Photonics.

[62]  Eric Andres Discrete linear objects in dimension n: the standard model , 2003, Graph. Model..

[63]  M. D. McIlroy,et al.  A note on discrete representation of lines , 1985, AT&T Technical Journal.

[64]  Eric Andres,et al.  Supercover of Straight Lines, Planes and Triangles , 1997, DGCI.

[65]  Julien Cassaigne Double sequences with complexity mn +1 1 , 1998 .

[66]  Makoto Ohtsuki,et al.  Parallelogram Tilings and Jacobi-Perron Algorithm , 1994 .

[67]  Laurent Vuillon,et al.  Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences , 2000, Discret. Math..

[68]  李幼升,et al.  Ph , 1989 .

[69]  J. van Leeuwen,et al.  Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[70]  Valentin E. Brimkov,et al.  Thin discrete triangular meshes , 2000, Theor. Comput. Sci..

[71]  Mohamed Tajine,et al.  Recognizing arithmetic straight lines and planes , 1996, DGCI.

[72]  David Coeurjolly,et al.  Reversible discrete volume polyhedrization using Marching Cubes simplification , 2004, IS&T/SPIE Electronic Imaging.

[73]  S. H. Y. Hung,et al.  On the Straightness of Digital Arcs , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[74]  Eric Andres,et al.  Object Discretization in Higher Dimensions , 2000, DGCI.