Rational design of solid catalysts for the selective use of glycerol as a natural organic building block.

Glycerol is the main co-product of the vegetable oils industry (especially biodiesel). With the rapid development of oleochemistry, the production of glycerol is rapidly increasing and chemists are trying to find new applications of glycerol to encourage a better industrial development of vegetable oils. In this Review, attention is focused on the selective use of glycerol as a safe organic building block for organic chemistry. An overview is given of the different heterogeneous catalytic routes developed by chemists for the successful and environmentally friendly use of glycerol in sustainable organic chemistry. In particular, the effects of different catalyst structural parameters are discussed to clearly highlight how catalysis can help organic chemists to overcome the drawbacks stemming from the use of glycerol as a safe organic building block. It is shown that heterogeneous catalysis offers efficient routes for bypassing the traditional use of highly toxic and expensive epichlorohydrin, 3-chloro-1,2-propanediol, or glycidol, which are usually used as a glyceryl donor in organic chemistry.

[1]  B. Weckhuysen,et al.  Highly active catalysts for the telomerization of crude glycerol with 1,3-butadiene. , 2008, ChemSusChem.

[2]  B. Weckhuysen,et al.  Glycerol etherification over highly active CaO-based materials: new mechanistic aspects and related colloidal particle formation. , 2008, Chemistry.

[3]  François Jérôme,et al.  Heterogeneously catalyzed etherification of glycerol: new pathways for transformation of glycerol to more valuable chemicals , 2008 .

[4]  G. Lu,et al.  Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. , 2008, Chemical Society reviews.

[5]  Arno Behr,et al.  Improved utilisation of renewable resources: New important derivatives of glycerol , 2008 .

[6]  Y. Sugi,et al.  Esterification of glycerol by lauric acid over aluminium and zirconium containing mesoporous molecular sieves in supercritical carbon dioxide medium , 2007 .

[7]  Martin Bajus,et al.  Etherification of glycerol and ethylene glycol by isobutylene , 2007 .

[8]  B. Kamm Produktion von Plattformchemikalien und Synthesegas aus Biomasse , 2007 .

[9]  B. Kamm,et al.  Production of platform chemicals and synthesis gas from biomass. , 2007, Angewandte Chemie.

[10]  M. Ghandi,et al.  Efficient Synthesis of α-Monoglycerides via Solventless Condensation of Fatty Acids with Glycerol Carbonate , 2007 .

[11]  M. Pagliaro,et al.  From glycerol to value-added products. , 2007, Angewandte Chemie.

[12]  Rosaria Ciriminna,et al.  Von Glycerin zu höherwertigen Produkten , 2007 .

[13]  J. Barrault,et al.  Significant enhancement on selectivity in silica supported sulfonic acids catalyzed reactions. , 2007, Chemical communications.

[14]  A. Corma,et al.  Chemical routes for the transformation of biomass into chemicals. , 2007, Chemical reviews.

[15]  A. Behr,et al.  Application of carbonate solvents in the telomerisation of butadiene with carbon dioxide , 2007 .

[16]  S. Bordiga,et al.  Selective catalysis and nanoscience: an inseparable pair. , 2007, Chemistry.

[17]  H. Lieske,et al.  Investigations on heterogeneously catalysed condensations of glycerol to cyclic acetals , 2007 .

[18]  J. Leroux,et al.  Self-assembled nanocages for hydrophilic guest molecules. , 2006, Journal of the American Chemical Society.

[19]  A. Šačkus,et al.  1,2-Glycerol Carbonate: A Versatile Renewable Synthon , 2006 .

[20]  Michele Aresta,et al.  A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: The role of the catalyst, solvent and reaction conditions , 2006 .

[21]  J. Aubry,et al.  Short Chain Glycerol 1-Monoethers – a New Class of Green Solvo-Surfactants, Green Chemistry , 2006 .

[22]  J. Barrault,et al.  Facile and regioselective mono- or diesterification of glycerol derivatives over recyclable phosphazene organocatalyst , 2006 .

[23]  Reetta Karinen,et al.  New biocomponents from glycerol , 2006 .

[24]  Martin Bajus,et al.  Etherification of glycerol with tert-butyl alcohol catalysed by ion-exchange resins , 2006 .

[25]  H. Vogel,et al.  Catalytic dehydration of glycerol in sub- and supercritical water: a new chemical process for acrolein production , 2006 .

[26]  Martin Bajus,et al.  tert-Butylation of glycerol catalysed by ion-exchange resins , 2005 .

[27]  A. Corma,et al.  Lewis and Brönsted basic active sites on solid catalysts and their role in the synthesis of monoglycerides , 2005 .

[28]  A. Corma,et al.  A new, alternative, halogen-free synthesis for the fragrance compound Melonal using zeolites and mesoporous materials as oxidation catalysts , 2005 .

[29]  Y. Pouilloux,et al.  Design of well balanced hydrophilic–lipophilic catalytic surfaces for the direct and selective monoesterification of various polyols , 2005 .

[30]  Paweł G. Parzuchowski,et al.  Hyperbranched aliphatic polyethers obtained from environmentally benign monomer: glycerol carbonate , 2005 .

[31]  E. Sastre,et al.  Influence of the alkyl chain length of HSO3-R-MCM-41 on the esterification of glycerol with fatty acids , 2005 .

[32]  Galen J. Suppes,et al.  Low-pressure hydrogenolysis of glycerol to propylene glycol , 2005 .

[33]  Y. Pouilloux,et al.  Selective glycerol transesterification over mesoporous basic catalysts , 2004 .

[34]  J. Barrault,et al.  “One pot” and selective synthesis of monoglycerides over homogeneous and heterogeneous guanidine catalysts , 2004 .

[35]  E. Sastre,et al.  Selective synthesis of fatty monoglycerides by using functionalised mesoporous catalysts , 2003 .

[36]  N. Talinli,et al.  Benzylation of alcohols by using bis[acetylacetonato]copper as catalyst , 2003 .

[37]  A. Behr,et al.  Highly Selective Biphasic Telomerization of Butadiene with Glycols: Scope and Limitations , 2003 .

[38]  V. S. Lin,et al.  Organosulfonic acid-functionalized mesoporous silicas for the esterification of fatty acid , 2003 .

[39]  G. Somorjai,et al.  Catalysis and nanoscience. , 2003, Chemical communications.

[40]  A. Bell The Impact of Nanoscience on Heterogeneous Catalysis , 2003, Science.

[41]  E. Sastre,et al.  Synthesis of MCM-41 materials functionalised with dialkylsilane groups and their catalytic activity in the esterification of glycerol with fatty acids , 2003 .

[42]  U. Bornscheuer,et al.  Synthesis of 2‐monoglycerides by alcoholysis of palm oil and tuna oil using immobilized lipases , 2003 .

[43]  Y. Pouilloux,et al.  Catalysis and fine chemistry , 2002 .

[44]  E. Lancelle-Beltran,et al.  Ordered mesoporous hybrid materials containing cobalt(II) Schiff base complex , 2002 .

[45]  Y. Pouilloux,et al.  Selective etherification of glycerol to polyglycerols over impregnated basic MCM-41 type mesoporous catalysts , 2002 .

[46]  D. Plusquellec,et al.  Synthese de polyglycerols lineaires et cycliques. Tensioactifs polyglyceryles : synthese et caracterisations , 2002 .

[47]  J. Šnupárek,et al.  Cyclic acetals : Synthesis and polymerization , 2001 .

[48]  Y. Pouilloux,et al.  Glycerol transesterification with methyl stearate over solid basic catalysts. I. Relationship between activity and basicity , 2001 .

[49]  C. Márquez-Álvarez,et al.  A novel synthesis route of well ordered, sulfur-bearing MCM-41 catalysts involving mixtures of neutral and cationic surfactants , 2001 .

[50]  T. Benvegnu,et al.  Original Synthesis of Linear, Branched and Cyclic Oligoglycerol Standards , 2001 .

[51]  C. Torres,et al.  Emulsifiers from solid and liquid polyols : different strategies for obtaining optimum conversions and selectivities , 2001 .

[52]  E. Sastre,et al.  Synthesis, characterization and catalytic activity of MCM-41-type mesoporous silicas functionalized with sulfonic acid , 2001 .

[53]  E. Sastre,et al.  Selective synthesis of glycerol monolaurate with zeolitic molecular sieves , 2000 .

[54]  C. Márquez-Álvarez,et al.  Combined Alkyl and Sulfonic Acid Functionalization of MCM-41-Type Silica: Part 2. Esterification of Glycerol with Fatty Acids , 2000 .

[55]  C. Márquez-Álvarez,et al.  Combined Alkyl and Sulfonic Acid Functionalization of MCM-41-Type Silica: Part 1. Synthesis and Characterization , 2000 .

[56]  J. Gras,et al.  A New Strategy to Synthesize Pure Mixed Diglycerides , 2000 .

[57]  R. Mülhaupt,et al.  MOLEKULARE NANOKAPSELN AUF DER BASIS VON AMPHIPHILEN HYPERVERZWEIGTEN POLYGLYCERINEN , 1999 .

[58]  Frey,et al.  Molecular Nanocapsules Based on Amphiphilic Hyperbranched Polyglycerols. , 1999, Angewandte Chemie.

[59]  Y. Pouilloux,et al.  Reaction of glycerol with fatty acids in the presence of ion-exchange resins: Preparation of monoglycerides , 1999 .

[60]  M. Härröd,et al.  Synthesis of monoglycerides by glycerolysis of rapeseed oil using immobilized lipase , 1999 .

[61]  D. Vos,et al.  Mesoporous Sulfonic Acids as Selective Heterogeneous Catalysts for the Synthesis of Monoglycerides , 1999 .

[62]  Zéphirin Mouloungui,et al.  Synthesis of glycerol carbonate by direct carbonatation of glycerol in supercritical CO2 in the presence of zeolites and ion exchange resins , 1998 .

[63]  Bradley F. Chmelka,et al.  Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures , 1998 .

[64]  Masaki Nakamura,et al.  Synthesis and properties of bis(sodium sulfonated ester) types of cleavable surfactants derived from 1-O-alkylglycerols , 1998 .

[65]  A. Krief,et al.  Diastereoselective synthesis of dimethyl cyclopropane-1,1-dicarboxylates from a γ-alkoxy-alkylidene malonate and sulfur and phosphorus ylides , 1998 .

[66]  A. Corma,et al.  Catalysts for the Production of Fine Chemicals: Production of Food Emulsifiers, Monoglycerides, by Glycerolysis of Fats with Solid Base Catalysts , 1998 .

[67]  H. Leijonmarck,et al.  Synthesis of Esters from Silyl Ethers and Acyl Chlorides: Catalysis by Quaternary Ammonium Chlorides. , 1997 .

[68]  C. Len,et al.  Synthesis of carbamic esters derivatives of itols : Antifungal activity against various crop diseases , 1997 .

[69]  M. Higgins,et al.  Synergism between the antifungal agents amphotericin B and alkyl glycerol ethers , 1994, Antimicrobial Agents and Chemotherapy.

[70]  Fabrizio Cavani,et al.  Hydrotalcite-type anionic clays: Preparation, properties and applications. , 1991 .

[71]  E. Gulari,et al.  1‐Monoglyceride production from lipase‐catalyzed esterification of glycerol and fatty acid in reverse micelles , 1991, Biotechnology and bioengineering.

[72]  I. Joelsson,et al.  Reduced Mortality in Cancer Patients After Administration of Alkoxyglycerols , 1986, Acta obstetricia et gynecologica Scandinavica.

[73]  N. Sonntag Glycerolysis of fats and methyl esters — Status, review and critique , 1982 .

[74]  N. Garti,et al.  Polyglycerol esters: Optimization and techno-economic evaluation , 1981 .

[75]  W. Hemker Associative structures of polyglycerol esters in food emulsions , 1981 .

[76]  C. Evans,et al.  Synthesis of cyclic glycerol acetal phosphates: proton and carbon-13 NMR characteristics of isomeric 1,3-dioxolane and 1,3-dioxane phosphate structures , 1980 .

[77]  W. Baumann,et al.  Long-chain stereomeric 2-alkyl-4-methoxycarbonyl-1,3-dioxolanes in glycerol acetal synthesis , 1977 .

[78]  A. Showler,et al.  Condensation products of glycerol with aldehydes and ketones. 2-Substituted m-dioxan-5-ols and 1,3-dioxolane-4-methanols. , 1967, Chemical reviews.

[79]  A. Heredia,et al.  Glycerol derivatives of cutin and suberin monomers: synthesis and self-assembly. , 2005, Biomacromolecules.

[80]  O. Ward,et al.  Synthesis of monoglyceride containing omega-3 fatty acids by microbial lipase in organic solvent , 2005, Journal of Industrial Microbiology.

[81]  D. D. De Vos,et al.  Esterification and Transesterification of Renewable Chemicals , 2004 .

[82]  Youn-Sik Lee,et al.  Synthesis of glycerol monostearate with high purity , 2003 .

[83]  Z. Mouloungui,et al.  Catalytic carbonylation of glycerin by urea in the presence of zinc mesoporous system for the synthesis of glycerol carbonate , 2003 .

[84]  J. Barrault,et al.  Préparation de diglycérol et triglycérol par polymérisation directe du glycérol en présence de catalyseurs mésoporeux basiques , 2002 .

[85]  E. Sastre,et al.  Esterification of lauric acid with glycerol using modified zeolite beta as catalyst , 2000 .

[86]  Y. Pouilloux,et al.  Synthesis and modification of basic mesoporous materials for the selective etherification of glycerol. , 2000 .

[87]  D. B. Jackson,et al.  Organomodified hexagonal mesoporous silicates , 1999 .

[88]  D. Vos,et al.  Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions , 1998 .

[89]  Y. Pouilloux,et al.  Mesoporous basic catalysts: comparison with alkaline exchange zeolites (basicity and porosity). Application to the selective etherification of glycerol to polyglycerols. , 1998 .

[90]  Y. Pouilloux,et al.  Selective synthesis of monoglycerides from glycerol and oleic acid in the presence of solid catalysts , 1997 .

[91]  S. Kaliaguine,et al.  Zeolite basicity characterized by pyrrole chemisorption: an infrared study , 1992 .

[92]  C. Rabiller,et al.  Enzymatic acylation using acid anhydrides: Crucial removal of acid , 1990 .