Numerical Evaluation of the Evans Function by Magnus Integration

We use Magnus methods to compute the Evans function for spectral problems as arise when determining the linear stability of travelling wave solutions to reaction-diffusion and related partial differential equations. In a typical application scenario, we need to repeatedly sample the solution to a system of linear non-autonomous ordinary differential equations for different values of one or more parameters as we detect and locate the zeros of the Evans function in the right half of the complex plane.In this situation, a substantial portion of the computational effort—the numerical evaluation of the iterated integrals which appear in the Magnus series—can be performed independent of the parameters and hence needs to be done only once. More importantly, for any given tolerance Magnus integrators possess lower bounds on the step size which are uniform across large regions of parameter space and which can be estimated a priori. We demonstrate, analytically as well as through numerical experiment, that these features render Magnus integrators extremely robust and, depending on the regime of interest, efficient in comparison with standard ODE solvers.

[1]  W. Magnus On the exponential solution of differential equations for a linear operator , 1954 .

[2]  J. Billingham,et al.  The development of travelling waves in quadratic and cubic autocatalysis with unequal diffusion rates. II. An initial-value problem with an immobilized or nearly immobilized autocatalyst , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[3]  Fernando Casas,et al.  Magnus and Fer expansions for matrix differential equations: the convergence problem , 1998 .

[4]  P. Hartman Ordinary Differential Equations , 1965 .

[5]  John Billingham,et al.  The development of travelling waves in quadratic and cubic autocatalysis with unequal diffusion rates. I. Permanent form travelling waves , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[6]  Bilal Chanane,et al.  Fliess series approach to the computation of the eigenvalues of fourth-order Sturm-Liouville problems , 2002, Appl. Math. Lett..

[7]  Donald E. Knuth,et al.  The art of computer programming, volume 3: (2nd ed.) sorting and searching , 1998 .

[8]  J. Pryce Numerical Solution of Sturm-Liouville Problems , 1994 .

[9]  Stephen Coombes,et al.  Evans Functions for Integral Neural Field Equations with Heaviside Firing Rate Function , 2004, SIAM J. Appl. Dyn. Syst..

[10]  A. Bountis Dynamical Systems And Numerical Analysis , 1997, IEEE Computational Science and Engineering.

[11]  A. Iserles,et al.  On the Implementation of the Method of Magnus Series for Linear Differential Equations , 1999 .

[12]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[13]  Arieh Iseries,et al.  Think globally, act locally: solving highly-oscillatory ordinary differential equations , 2002 .

[14]  Thomas J. Bridges,et al.  Numerical exterior algebra and the compound matrix method , 2002, Numerische Mathematik.

[15]  Marco Marletta,et al.  Solving ODEs arising from non‐selfadjoint Hamiltonian eigenproblems , 2000, Adv. Comput. Math..

[16]  I. Bialynicki-Birula,et al.  Explicit solution of the continuous Baker-Campbell-Hausdorff problem and a new expression for the phase operator , 1969 .

[17]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[18]  David Terman,et al.  Stability of planar wave solutions to combustion model , 1990 .

[19]  Marco Marletta,et al.  Numerical Solution of Non-Self-Adjoint Sturm-Liouville Problems and Related Systems , 2000, SIAM J. Numer. Anal..

[20]  Antonella Zanna,et al.  Efficient Computation of the Matrix Exponential by Generalized Polar Decompositions , 2004, SIAM J. Numer. Anal..

[21]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[22]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[23]  J. Alexander,et al.  A topological invariant arising in the stability analysis of travelling waves. , 1990 .

[24]  G. Peano,et al.  Intégration par séries des équations différentielles linéaires , 1888 .

[25]  J. M. Ball,et al.  GEOMETRIC THEORY OF SEMILINEAR PARABOLIC EQUATIONS (Lecture Notes in Mathematics, 840) , 1982 .

[26]  H. Baker On the Integration of Linear Differential Equations , 1902 .

[27]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[28]  Todd Kapitula,et al.  The Evans function and generalized Melnikov integrals , 1999 .

[29]  J. Ros,et al.  High Order Optimized Geometric Integrators for Linear Differential Equations , 2002 .

[30]  B. Sandstede,et al.  Chapter 18 - Stability of Travelling Waves , 2002 .

[31]  Simon J. A. Malham,et al.  Unsteady fronts in an autocatalytic system , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[32]  M. Reed,et al.  Methods of Modern Mathematical Physics. 2. Fourier Analysis, Self-adjointness , 1975 .

[33]  Michael I. Weinstein,et al.  Eigenvalues, and instabilities of solitary waves , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[34]  Arieh Iserles,et al.  On the Method of Neumann Series for Highly Oscillatory Equations , 2004 .

[35]  H. Munthe-Kaas,et al.  Computations in a free Lie algebra , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[36]  A. Iserles,et al.  On the solution of linear differential equations in Lie groups , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[37]  Marlis Hochbruck,et al.  On Magnus Integrators for Time-Dependent Schrödinger Equations , 2003, SIAM J. Numer. Anal..