Ligand binding complexes in lipocalins: Underestimation of the stoichiometry parameter (n).

[1]  B. Glasgow,et al.  Interaction of ceramides and tear lipocalin. , 2018, Biochimica et biophysica acta. Molecular and cell biology of lipids.

[2]  S. Ramaswamy,et al.  Blue protein with red fluorescence , 2016, Proceedings of the National Academy of Sciences.

[3]  E. Hallin,et al.  Molecular studies on structural changes and oligomerisation of violaxanthin de-epoxidase associated with the pH-dependent activation , 2016, Photosynthesis Research.

[4]  Ville R. I. Kaila,et al.  Protein-Induced Color Shift of Carotenoids in β-Crustacyanin. , 2015, Angewandte Chemie.

[5]  J. Jänis,et al.  Dimerization of lipocalin allergens , 2015, Scientific Reports.

[6]  Whitson,et al.  Human Odorant Binding Protein 2a has Two Affinity States and is Capable ofBinding Some Uremic Toxins , 2014 .

[7]  M. Bello,et al.  Ligand binding and self‐association cooperativity of β‐lactoglobulin , 2013, Journal of molecular recognition : JMR.

[8]  L. Prokai,et al.  Selective N-terminal fluorescent labeling of proteins using 4-chloro-7-nitrobenzofurazan: a method to distinguish protein N-terminal acetylation. , 2012, Analytical biochemistry.

[9]  B. Glasgow,et al.  Mass spectrometric identification of phospholipids in human tears and tear lipocalin. , 2012, Investigative ophthalmology & visual science.

[10]  B. Garner,et al.  Molecular Dynamics Analysis of Apolipoprotein-D - Lipid Hydroperoxide Interactions: Mechanism for Selective Oxidation of Met-93 , 2012, PloS one.

[11]  W. Kim,et al.  Selective reduction of hydroperoxyeicosatetraenoic acids to their hydroxy derivatives by apolipoprotein D: implications for lipid antioxidant activity and Alzheimer's disease. , 2012, The Biochemical journal.

[12]  B. Glasgow,et al.  Excited protein states of human tear lipocalin for low- and high-affinity ligand binding revealed by functional AB loop motion. , 2010, Biophysical chemistry.

[13]  S. Blanksby,et al.  Detection and quantification of tear phospholipids and cholesterol in contact lens deposits: the effect of contact lens material and lens care solution. , 2010, Investigative ophthalmology & visual science.

[14]  B. Glasgow,et al.  Tear lipocalin captures exogenous lipid from abnormal corneal surfaces. , 2010, Investigative ophthalmology & visual science.

[15]  A. Skerra,et al.  A new crystal form of human tear lipocalin reveals high flexibility in the loop region and induced fit in the ligand cavity. , 2009, Acta crystallographica. Section D, Biological crystallography.

[16]  K. Fujiwara,et al.  Fatty acids bound to recombinant tear lipocalin and their role in structural stabilization. , 2009, Journal of biochemistry.

[17]  M. S. Gonçalves,et al.  Fluorescent labeling of biomolecules with organic probes. , 2009, Chemical reviews.

[18]  L. Poole Measurement of Protein Sulfenic Acid Content , 2008, Current protocols in toxicology.

[19]  M. Bastiani,et al.  Molecular interactions of the neuronal GPI‐anchored lipocalin Lazarillo , 2008, Journal of molecular recognition : JMR.

[20]  B. Glasgow,et al.  Oligomeric state of lipocalin-1 (LCN1) by multiangle laser light scattering and fluorescence anisotropy decay. , 2007, Biochimica et biophysica acta.

[21]  A. Skerra,et al.  Comparative ligand-binding analysis of ten human lipocalins. , 2006, Biochimica et biophysica acta.

[22]  J. Tiffany,et al.  Human tear viscosity: an interactive role for proteins and lipids. , 2005, Biochimica et biophysica acta.

[23]  I. Korndörfer,et al.  The 1.8-Å Crystal Structure of Human Tear Lipocalin Reveals an Extended Branched Cavity with Capacity for Multiple Ligands* , 2005, Journal of Biological Chemistry.

[24]  J. Larsson,et al.  The lipocalin alpha(1)-microglobulin binds heme in different species. , 2004, Archives of biochemistry and biophysics.

[25]  B. Glasgow Tissue expression of lipocalins in human lacrimal and von Ebner's glands: colocalization with lysozyme , 1995, Graefe's Archive for Clinical and Experimental Ophthalmology.

[26]  Loïc Briand,et al.  Evidence of an odorant-binding protein in the human olfactory mucus: location, structural characterization, and odorant-binding properties. , 2002, Biochemistry.

[27]  G. Paesen,et al.  A high affinity serotonin‐ and histamine‐binding lipocalin from tick saliva , 2002, Insect molecular biology.

[28]  B. Glasgow,et al.  Site-directed tryptophan fluorescence reveals the solution structure of tear lipocalin: evidence for features that confer promiscuity in ligand binding. , 2001, Biochemistry.

[29]  A. Skerra,et al.  Bacterially produced apolipoprotein D binds progesterone and arachidonic acid, but not bilirubin or E‐3M2H , 2001, Journal of molecular recognition : JMR.

[30]  W. Goessling,et al.  Role of apolipoprotein D in the transport of bilirubin in plasma. , 2000, American journal of physiology. Gastrointestinal and liver physiology.

[31]  B. Qin,et al.  Functional implications of structural differences between variants A and B of bovine β‐lactoglobulin , 2008, Protein science : a publication of the Protein Society.

[32]  B. Glasgow,et al.  Tear lipocalins: potential lipid scavengers for the corneal surface. , 1999, Investigative ophthalmology & visual science.

[33]  B. Glasgow,et al.  Side chain mobility and ligand interactions of the G strand of tear lipocalins by site-directed spin labeling. , 1999, Biochemistry.

[34]  B. Glasgow,et al.  Binding studies of tear lipocalin: the role of the conserved tryptophan in maintaining structure, stability and ligand affinity. , 1999, Biochimica et biophysica acta.

[35]  H. Toh,et al.  Binding of biliverdin, bilirubin, and thyroid hormones to lipocalin-type prostaglandin D synthase. , 1999, Biochemistry.

[36]  S. Borghoff,et al.  Evaluation of thein VivoInteraction of Methyltert-Butyl Ether with α2u-Globulin in Male F-344 Rats☆ , 1999 .

[37]  E N Baker,et al.  Structural basis of the Tanford transition of bovine beta-lactoglobulin. , 1998, Biochemistry.

[38]  B. Glasgow,et al.  A conserved disulfide motif in human tear lipocalins influences ligand binding. , 1998, Biochemistry.

[39]  L. Berliner,et al.  Mapping fatty acid binding to β‐lactoglobulin: Ligand binding is restricted by modification of Cys 121 , 1998, Protein science : a publication of the Protein Society.

[40]  Y. Urade,et al.  Lipocalin-type Prostaglandin D Synthase (β-Trace) Is a Newly Recognized Type of Retinoid Transporter* , 1997, The Journal of Biological Chemistry.

[41]  Jonathan C Allen,et al.  Binding of Vitamin D and Cholesterol to β-Lactoglobulin , 1997 .

[42]  J. M. Morais Cabral,et al.  Arachidonic acid binds to apolipoprotein D: implications for the protein's function , 1995, FEBS letters.

[43]  B. Glasgow,et al.  Tear lipocalins bind a broad array of lipid ligands. , 1995, Current eye research.

[44]  C. Batt,et al.  Probing the retinol-binding site of bovine beta-lactoglobulin. , 1994, The Journal of biological chemistry.

[45]  G. Malpeli,et al.  The interaction of N-ethyl retinamide with plasma retinol-binding protein (RBP) and the crystal structure of the retinoid-RBP complex at 1.9-A resolution. , 1994, The Journal of biological chemistry.

[46]  A. Skerra,et al.  Functional expression of the uncomplexed serum retinol-binding protein in Escherichia coli. Ligand binding and reversible unfolding characteristics. , 1993, Journal of molecular biology.

[47]  E. Dufour,et al.  Reversible effects of medium dielectric constant on structural transformation of β‐lactoglobulin and its retinol binding , 1993, Biopolymers.

[48]  F. Lottspeich,et al.  cDNA cloning and sequencing reveals human tear prealbumin to be a member of the lipophilic-ligand carrier protein superfamily. , 1992, The Journal of biological chemistry.

[49]  W. Blaner,et al.  Interactions of retinol with binding proteins: studies with rat cellular retinol-binding protein and with rat retinol-binding protein. , 1991, Biochemistry.

[50]  T. Hashimoto,et al.  Modification of gelsolin with 4-fluoro-7-nitrobenz-2-oxa-1,3-diazole. , 1991, European journal of biochemistry.

[51]  J A Swenberg,et al.  Characteristics of chemical binding to alpha 2u-globulin in vitro--evaluating structure-activity relationships. , 1991, Toxicology and applied pharmacology.

[52]  R. Huber,et al.  Molecular structure of the bilin binding protein (BBP) from Pieris brassicae after refinement at 2.0 A resolution. , 1987, Journal of molecular biology.

[53]  T. Houk,et al.  pH and polymerization dependence of the site of labeling of actin by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. , 1983, The Journal of biological chemistry.

[54]  P. Allegrini,et al.  Site-directed fluorogenic modification of bacteriorhodopsin by 7-chloro-4-nitrobenz-2-oxa-1,3-diazole. , 1983, European journal of biochemistry.

[55]  U. Cogan,et al.  Binding affinities of retinol and related compounds to retinol binding proteins. , 1976, European journal of biochemistry.

[56]  P. Luisi,et al.  Reaction of chicken egg white lysozyme with 7-chloro-4-nitrobenz-2-oxa-1,3-diazole. , 1973, Biochimica et biophysica acta.