Chemo-mechanical modeling for prediction of alkali silica reaction (ASR) expansion

The effect of the size of the aggregate on ASR expansion has already been well illustrated. This paper presents a microscopic model to analyze the development of ASR expansion of mortars containing reactive aggregate of different sizes. The attack of the reactive silica by alkali was determined through the mass balance equation, which controls the diffusion mechanism in the aggregate and the fixation of the alkali in the ASR gels. The mechanical part of the model is based on the damage theory in order to assess the decrease of stiffness of the mortar due to cracking caused by ASR and to calculate the expansion of a Representative Elementary Volume (REV) of concrete. Parameters of the model were estimated by curve fitting the expansions of four experimental mortars. The paper shows that the decrease of expansion with the size of the aggregate and the increase of the expansion with the alkali content are reproduced by the model, which is able to predict the expansions of six other mortars containing two sizes of reactive aggregate and cast with two alkali contents.

[1]  Dent Classer,et al.  The Chemistry of Alkali-Aggregate Reactions , 1981 .

[2]  Marc-André Bérubé,et al.  Decrease of pore solution alkalinity in concrete tested for alkali-silica reaction , 2007 .

[3]  Catherine Larive,et al.  Apports combinés de l'expérimentation et de la modélisation à la compréhension de l'Alcali-réaction et de ses effets mécaniques , 1998 .

[4]  Per Goltermann,et al.  Mechanical Predictions on Concrete Deterioration. Part 1: Eigenstresses in Concrete , 1994 .

[5]  A.J.M. Siemes,et al.  Low tensile strength in older concrete structures with alkali-silica reaction , 2000 .

[6]  J. Lemaitre,et al.  Mécanique des matériaux solides , 1996 .

[7]  Pierre Léger,et al.  Finite element analysis of concrete swelling due to alkali-aggregate reactions in dams , 1996 .

[8]  D. W. Hobbs,et al.  Deleterious alkali–silica reactivity in the laboratory and under field conditions , 1993 .

[9]  S. Urhan,et al.  Alkali silica and pozzolanic reactions in concrete. Part 1: Interpretation of published results and an hypothesis concerning the mechanism , 1987 .

[10]  Victor E. Saouma,et al.  Stress Analysis of Concrete Structures Subjected to Alkali-Aggregate Reactions , 2007 .

[11]  Kefei Li,et al.  Concrete ASR degradation : from material modelling to structure assessment , 2002 .

[12]  J. Lombardi,et al.  Composition et volume molaire apparent des gels CaSi, une approche expérimentale , 2003 .

[13]  Etienne Grimal,et al.  Caractérisation des effets du gonflement provoqué par la réaction alcali-silice sur le comportement d'une structure en béton , 2006 .

[14]  Alain Sellier,et al.  Chemical modelling of Alkali Silica reaction: Influence of the reactive aggregate size distribution , 2007 .

[15]  Alexander Steffens,et al.  Mathematical model for kinetics of alkali-silica reaction in concrete , 2000 .

[16]  Mitsunori Kawamura,et al.  Effects of lithium salts on ASR gel composition and expansion of mortars , 2003 .

[17]  T. Uomoto,et al.  Analytical Study Concerning Prediction of Concrete Expansion Due to Alkali-Silica Reaction , 1994, "SP-145: Durability of Concrete -- Proceedings Third CANMET - ACI International Conference, Nice, France 1994".

[18]  R. Hooton,et al.  Reduction in Mortar and Concrete Expansion with Reactive Aggregates Due to Alkali Leaching , 1991 .

[19]  Stéphane Poyet Étude de la dégradation des ouvrages en béton atteints par la réaction alcali-silice : approche expérimentale et modélisation numérique multi-échelles des dégradations dans un environnement hydro-chemo-mécanique variable , 2003 .

[20]  Etienne Grimal,et al.  Creep, Shrinkage, and Anisotropic Damage in Alkali-Aggregate Reaction Swelling Mechanism-Part I: A Constitutive Model , 2008 .

[21]  Christian Meyer,et al.  Fracture Mechanics of ASR in Concretes with Waste Glass Particles of Different Sizes , 2000 .

[22]  Alain Sellier,et al.  Coupled effects of aggregate size and alkali content on ASR expansion , 2008 .

[23]  S. Chatterji,et al.  The role of Ca(OH)2 in the breakdown of Portland cement concrete due to alkali-silica reaction , 1979 .

[24]  L. Glasser,et al.  The chemistry of ‘alkali-aggregate’ reaction , 1981 .

[25]  Michael D.A. Thomas,et al.  The effect of fly ash composition on the expansion of concrete due to alkali-silica reaction , 2000 .

[26]  Olivier Coussy,et al.  Thermo-chemo-mechanics of ASR expansion in concrete structures , 2000 .

[27]  M Wieland,et al.  Analysis of an arch–gravity dam with a horizontal crack , 1999 .

[28]  U. H. Jakobsen,et al.  Composition of alkali silica gel and ettringite in concrete railroad ties: SEM-EDX and X-ray diffraction analyses , 1996 .

[29]  Michael D.A. Thomas,et al.  ESTIMATING THE ALKALI CONTRIBUTION FROM FLY ASH TO EXPANSION DUE TO ALKALI-AGGREGATE REACTION IN CONCRETE , 1996 .

[30]  A. Nielsen,et al.  Development of stresses in concrete structures with alkali-silica reactions , 1993 .