Rover localization in natural environments by indexing panoramic images

In this paper, we present an approach to qualitative rover localization with panoramic images. The approach relies on the possibility to efficiently and robustly compute the resemblance between panoramic images, indexing them by histograms of local appearances. A database of image indexes is dynamically built during rover motions: when the rover re-perceives an already crossed area, it matches the current image with the stored ones (place recognition), and thus gets a qualitative estimate of its position. Experimental results on a 400 images database illustrates the effectiveness of the algorithms.

[1]  Lucas J. van Vliet,et al.  Recursive implementation of the Gaussian filter , 1995, Signal Process..

[2]  A. Leonardis,et al.  Robust localization using eigenspace of spinning-images , 2000, Proceedings IEEE Workshop on Omnidirectional Vision (Cat. No.PR00704).

[3]  Joachim Hertzberg,et al.  Robust localization using context in omnidirectional imaging , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[4]  Rajesh P. N. Rao,et al.  Object indexing using an iconic sparse distributed memory , 1995, Proceedings of IEEE International Conference on Computer Vision.

[5]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[6]  Lucas J. van Vliet,et al.  Recursive Gaussian derivative filters , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[7]  Bernt Schiele,et al.  Recognition without Correspondence using Multidimensional Receptive Field Histograms , 2004, International Journal of Computer Vision.

[8]  Leonidas J. Guibas,et al.  A metric for distributions with applications to image databases , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[9]  Jing Huang,et al.  Spatial Color Indexing and Applications , 2004, International Journal of Computer Vision.

[10]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[11]  Alexander Zelinsky,et al.  Localisation using automatically selected landmarks from panoramic images , 2000 .

[12]  James Lee Hafner,et al.  Efficient Color Histogram Indexing for Quadratic Form Distance Functions , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[14]  Cordelia Schmid,et al.  A structured probabilistic model for recognition , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[15]  José Santos-Victor,et al.  Information Sampling for Optimal Image Data Selection , 2001 .

[16]  Hiroshi Ishiguro,et al.  Image-based memory of environment , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.