Iterative Methods for the Solution of Large Systems of Linear Equations. Some Further Methods

Many problems in practice require the solution of very large systems of linear equations Ax = b in which the matrix A, fortunately, is sparse, i.e., has relatively few nonvanishing elements. Systems of this type arise, e.g., in the application of difference methods or finite-element methods to the approximate solution of boundary-value problems in partial differential equations. The usual elimination methods (see Chapter 4) cannot normally be applied here, since without special precautions they tend to lead to the formation of more or less dense intermediate matrices, making the number of arithmetic operations necessary for the solution much too large, even for present-day computers, not to speak of the fact that the intermediate matrices no longer fit into the usually available computer memory.

[1]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[2]  G. Forsythe,et al.  Computer solution of linear algebraic systems , 1969 .

[3]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[4]  P. Swarztrauber THE METHODS OF CYCLIC REDUCTION, FOURIER ANALYSIS AND THE FACR ALGORITHM FOR THE DISCRETE SOLUTION OF POISSON'S EQUATION ON A RECTANGLE* , 1977 .

[5]  Richard S. Varga,et al.  Iterative Solution of Elliptic Systems and Applications to the Neutron Diffusion Equations of Reactor Physics (Eugene L. Wachspress) , 1967 .

[6]  O. Axelsson Solution of linear systems of equations: Iterative methods , 1977 .

[7]  J. Uhlig C. Forsythe and C. B. Moler, Computer Solution of Linear Algebraic Systems. (Series in Automatic Computation) XI + 148 S. Englewood Cliffs, N.J. 1967. Prentice-Hall, Inc. Preis geb. 54 s. net , 1972 .

[8]  W. Greub Linear Algebra , 1981 .

[9]  V. A. Barker Sparse Matrix Techniques , 1977 .

[10]  R. Willoughby Sparse matrices and their applications , 1972 .

[11]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[12]  R. Hockney The potential calculation and some applications , 1970 .

[13]  O. Widlund,et al.  On the Numerical Solution of Helmholtz's Equation by the Capacitance Matrix Method , 1976 .

[14]  Alston S. Householder,et al.  The Theory of Matrices in Numerical Analysis , 1964 .

[15]  H. Wittmeyer Über die Lösung von linearen Gleichungssystemen durch Iteration , 1936 .

[16]  Harold Greenspan,et al.  Iterative Solution of Elliptic Systems and Application to the Neutron Diffusion Equations of Reactor Physics , 1966 .

[17]  B. L. Buzbee,et al.  The Direct Solution of the Biharmonic Equation on Rectangular Regions and the Poisson Equation on Irregular Regions , 1974 .

[18]  J. Schröder,et al.  Reduktionsverfahren für Differenzengleichungen bei Randwertaufgaben II , 1976 .

[19]  Alston S. Householder,et al.  Handbook for Automatic Computation , 1960, Comput. J..

[20]  H. Schwetlick Wilkinson, J. H. and C. Reinsch, Linear Algebra. (Die Grundlehren der mathematischen Wissenschaften, Band 186). X + 439 S. m. 4 Fig. Vol. II. Berlin/Heidelberg/New York 1971. Springer‐Verlag. Preis geb. DM 72,— , 1975 .

[21]  J. Reid Large Sparse Sets of Linear Equations , 1973 .

[22]  B. L. Buzbee,et al.  The direct solution of the discrete Poisson equation on irregular regions , 1970 .

[23]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[24]  J. Schröder,et al.  Reduktionsverfahren für Differenzengleichungen bei Randwertaufgaben I , 1974 .

[25]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .