LakeBench: Benchmarks for Data Discovery over Data Lakes
暂无分享,去创建一个
I. Abdelaziz | Kavitha Srinivas | Tejaswini Pedapati | Julian Dolby | Oktie Hassanzadeh | Subhajit Chaudhury | Aamod Khatiwada | H. Samulowitz | Harsha Kokel
[1] Paolo Papotti,et al. Transformers for Tabular Data Representation: A Survey of Models and Applications , 2023, TACL.
[2] Renée J. Miller,et al. Integrating Data Lake Tables , 2022, Proc. VLDB Endow..
[3] Renée J. Miller,et al. SANTOS: Relationship-based Semantic Table Union Search , 2022, Proc. ACM Manag. Data.
[4] Qian Liu,et al. TAPEX: Table Pre-training via Learning a Neural SQL Executor , 2021, ICLR.
[5] M. Jarke,et al. Data Lakes: A Survey of Functions and Systems , 2021, IEEE Transactions on Knowledge and Data Engineering.
[6] H. Iida,et al. TABBIE: Pretrained Representations of Tabular Data , 2021, NAACL.
[7] Pedro A. Szekely,et al. Retrieving Complex Tables with Multi-Granular Graph Representation Learning , 2021, SIGIR.
[8] W. Tan,et al. Annotating Columns with Pre-trained Language Models , 2021, SIGMOD Conference.
[9] Dongmei Zhang,et al. TUTA: Tree-based Transformers for Generally Structured Table Pre-training , 2020, KDD.
[10] Christoph Lofi,et al. Valentine: Evaluating Matching Techniques for Dataset Discovery , 2020, 2021 IEEE 37th International Conference on Data Engineering (ICDE).
[11] Dragomir R. Radev,et al. GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing , 2020, ICLR.
[12] Lucian Popa,et al. Global Table Extractor (GTE): A Framework for Joint Table Identification and Cell Structure Recognition Using Visual Context , 2020, 2021 IEEE Winter Conference on Applications of Computer Vision (WACV).
[13] Graham Neubig,et al. TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data , 2020, ACL.
[14] Thomas Muller,et al. TaPas: Weakly Supervised Table Parsing via Pre-training , 2020, ACL.
[15] W. Tan,et al. Deep entity matching with pre-trained language models , 2020, Proc. VLDB Endow..
[16] Renée J. Miller,et al. Data Lake Management: Challenges and Opportunities , 2019, Proc. VLDB Endow..
[17] Krisztian Balog,et al. Web Table Extraction, Retrieval and Augmentation , 2019, SIGIR.
[18] Renée J. Miller,et al. JOSIE: Overlap Set Similarity Search for Finding Joinable Tables in Data Lakes , 2019, SIGMOD Conference.
[19] Tim Kraska,et al. Sherlock: A Deep Learning Approach to Semantic Data Type Detection , 2019, KDD.
[20] Tim Kraska,et al. VizNet: Towards A Large-Scale Visualization Learning and Benchmarking Repository , 2019, CHI.
[21] Tao Yu,et al. Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task , 2018, EMNLP.
[22] Theodoros Rekatsinas,et al. Deep Learning for Entity Matching: A Design Space Exploration , 2018, SIGMOD Conference.
[23] Renée J. Miller,et al. Table Union Search on Open Data , 2018, Proc. VLDB Endow..
[24] AnHai Doan,et al. Technical Perspective:: Toward Building Entity Matching Management Systems , 2016, SGMD.
[25] Dominique Ritze,et al. A Large Public Corpus of Web Tables containing Time and Context Metadata , 2016, WWW.
[26] Markus Krötzsch,et al. Wikidata , 2014, Commun. ACM.
[27] Reynold Xin,et al. Finding related tables , 2012, SIGMOD Conference.
[28] Daisy Zhe Wang,et al. WebTables: exploring the power of tables on the web , 2008, Proc. VLDB Endow..
[29] Erhard Rahm,et al. A survey of approaches to automatic schema matching , 2001, The VLDB Journal.
[30] Proceedings of the Semantic Web Challenge on Tabular Data to Knowledge Graph Matching, SemTab 2022, co-located with the 21st International Semantic Web Conference, ISWC 2022, Virtual conference, October 23-27, 2022 , 2023, SemTab@ISWC.
[31] Paolo Papotti. Technical Perspective of TURL , 2022, SIGMOD Rec..
[32] SIGIR '21: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, Canada, July 11-15, 2021 , 2021, SIGIR.
[33] Ming-Wei Chang,et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.
[34] E. Prud hommeaux,et al. SPARQL query language for RDF , 2011 .