The gravity field, orientation, and ephemeris of Mercury from MESSENGER observations after three years in orbit

We have analyzed 3 years of radio tracking data from the MESSENGER spacecraft in orbit around Mercury and determined the gravity field, planetary orientation, and ephemeris of the innermost planet. With improvements in spatial coverage, force modeling, and data weighting, we refined an earlier global gravity field both in quality and resolution, and we present here a spherical harmonic solution to degree and order 50. In this field, termed HgM005, uncertainties in low-degree coefficients are reduced by an order of magnitude relative to earlier global fields, and we obtained a preliminary value of the tidal Love number k2 of 0.451±0.014. We also estimated Mercury's pole position, and we obtained an obliquity value of 2.06±0.16 arcmin, in good agreement with analysis of Earth-based radar observations. From our updated rotation period (58.646146 ± 0.000011 days) and Mercury ephemeris, we verified experimentally the planet's 3 : 2 spin-orbit resonance to greater accuracy than previously possible. We present a detailed analysis of the HgM005 covariance matrix, and we describe some near-circular frozen orbits around Mercury that could be advantageous for future exploration.

[1]  R Jastrow,et al.  Satellite Orbits. , 1961, Science.

[2]  D. Gambis,et al.  Monitoring Earth orientation using space-geodetic techniques: state-of-the-art and prospective , 2004 .

[3]  David E. Smith,et al.  Effects of Self-Shadowing on Nonconservative Force Modeling for Mars-Orbiting Spacecraft , 2009 .

[4]  R. Ray,et al.  Precise comparisons of bottom‐pressure and altimetric ocean tides , 2013 .

[5]  David A. Paige,et al.  Thermal Stability of Volatiles in the North Polar Region of Mercury , 2013, Science.

[6]  David E. Smith,et al.  The Radio Frequency Subsystem and Radio Science on the MESSENGER Mission , 2007 .

[7]  Giorgio Spada,et al.  ALMA, a Fortran program for computing the viscoelastic Love numbers of a spherically symmetric planet , 2008, Comput. Geosci..

[8]  Jean-Luc Margot,et al.  A Mercury orientation model including non-zero obliquity and librations , 2009 .

[9]  V. Dehant,et al.  Mercury’s Interior Structure, Rotation, and Tides , 2007 .

[10]  Roger J. Phillips,et al.  Potential anomalies on a sphere: Applications to the thickness of the lunar crust , 1998 .

[11]  G. Pettengill,et al.  A Radar Determination of the Rotation of the Planet Mercury , 1965, Nature.

[12]  Jürgen Oberst,et al.  The equatorial shape and gravity field of Mercury from MESSENGER flybys 1 and 2 , 2010 .

[13]  A. Rivoldini,et al.  The interior structure of Mercury constrained by the low-degree gravity field and the rotation of Mercury , 2013 .

[14]  A. Genova,et al.  Mercury's gravity field from the first six months of MESSENGER data , 2013 .

[15]  David E. Smith,et al.  High‒degree gravity models from GRAIL primary mission data , 2013 .

[16]  F. LeMoine,et al.  Improved nearside gravity field of the Moon by localizing the power law constraint , 2009 .

[17]  David E. Smith,et al.  Topography of the Northern Hemisphere of Mercury from MESSENGER Laser Altimetry , 2012, Science.

[18]  F. Simons,et al.  Localized spectral analysis on the sphere , 2005 .

[19]  D. Tholen,et al.  Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009 , 2011 .

[20]  Walter H. F. Smith,et al.  Free software helps map and display data , 1991 .

[21]  Agnes Fienga,et al.  Use of MESSENGER radioscience data to improve planetary ephemeris and to test general relativity , 2013, 1306.5569.

[22]  Frank G. Lemoine,et al.  An improved solution of the gravity field of Mars (GMM‐2B) from Mars Global Surveyor , 2001 .

[23]  Frank G. Lemoine,et al.  A 70th degree lunar gravity model (GLGM‐2) from Clementine and other tracking data , 1997 .

[24]  David E. Smith,et al.  Orbit determination of the Lunar Reconnaissance Orbiter , 2012, Journal of Geodesy.

[25]  A. Konopliv,et al.  Venus Gravity: 180th Degree and Order Model , 1999 .

[26]  A. Rivoldini,et al.  The interior structure of Mercury and its core sulfur content , 2009 .

[27]  R. L. Duncombe,et al.  Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites , 1980 .

[28]  Sami W. Asmar,et al.  The Vesta gravity field, spin pole and rotation period, landmark positions, and ephemeris from the Dawn tracking and optical data , 2014 .

[29]  Kenneth P. Klaasen,et al.  Mercury's rotation axis and period , 1976 .

[30]  M. Zuber,et al.  Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters , 2011 .

[31]  David E. Smith,et al.  Lunar Reconnaissance Orbiter Overview: The Instrument Suite and Mission , 2007 .

[32]  Luciano Iess,et al.  MORE: an advanced tracking experiment for the exploration of Mercury with the mission BepiColombo , 2006 .

[33]  David E. Smith,et al.  Gravity Field and Internal Structure of Mercury from MESSENGER , 2012, Science.

[34]  J. Andrew Marshall,et al.  Radiative force model performance for TOPEX/Poseidon precision orbit determination , 1994 .

[35]  David E. Smith,et al.  GLGM‐3: A degree‐150 lunar gravity model from the historical tracking data of NASA Moon orbiters , 2010 .

[36]  Theodore D. Moyer,et al.  Transformation from proper time on Earth to coordinate time in solar system barycentric space-time frame of reference , 1976 .

[37]  David E. Smith,et al.  The curious case of Mercury's internal structure , 2013 .

[38]  R. Jurgens,et al.  Large Longitude Libration of Mercury Reveals a Molten Core , 2007, Science.

[39]  Xue Ma,et al.  Artificial frozen orbits around Mercury , 2013 .

[40]  T. Hoolst,et al.  Mercury's tides and interior structure , 2003 .

[41]  W. M. Kaula Theory of satellite geodesy , 1966 .

[42]  S. Solomon,et al.  The tides of Mercury and possible implications for its interior structure , 2014 .

[43]  J. Anderson,et al.  The mass, gravity field, and ephemeris of Mercury , 1987 .

[44]  David E. Smith,et al.  Gravity Field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission , 2013, Science.

[45]  Donald B. Campbell,et al.  Mercury's moment of inertia from spin and gravity data , 2012 .

[46]  David E. Smith,et al.  A procedure for determining the nature of Mercury's core , 2002 .

[47]  A. Lemaitre,et al.  Frozen orbits at high eccentricity and inclination: application to Mercury orbiter , 2010, 1003.0327.

[48]  P. Kuchynka,et al.  The Planetary and Lunar Ephemerides DE430 and DE431 , 2014 .

[49]  T. D. Moyer Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation , 2003 .

[50]  David E. Smith,et al.  The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL Primary Mission , 2013 .

[51]  W. M. Kaula,et al.  Theory of Satellite Geodesy: Applications of Satellites to Geodesy , 2000 .

[52]  George W. Rosborough,et al.  Prediction of radiant energy forces on the TOPEX/POSEIDON spacecraft , 1992 .