Exploring the uncertainty in GRACE estimates of the mass redistributions at the Earth surface: implications for the global water and sea level budgets

[1]  Z. Altamimi,et al.  ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions , 2016 .

[2]  H. Dieng,et al.  New estimate of the current rate of sea level rise from a sea level budget approach , 2017 .

[3]  Duncan J. Wingham,et al.  Increased ice losses from Antarctica detected by CryoSat‐2 , 2014 .

[4]  D. Chambers Evaluation of new GRACE time‐variable gravity data over the ocean , 2006 .

[5]  Bo Sun,et al.  Bedmap2: improved ice bed, surface and thickness datasets for Antarctica , 2012 .

[6]  Isabella Velicogna,et al.  Time‐variable gravity observations of ice sheet mass balance: Precision and limitations of the GRACE satellite data , 2013 .

[7]  R. Rietbroek,et al.  Key Points: @bullet Consistent Method for Estimating Mass Balances from Grace @bullet Mascon Technique @bullet Evaluate Systematic Errors Gia Correction a Mascon Approach to Assess Ice Sheet and Glacier Mass Balances and Their Uncertainties from Grace Data , 2022 .

[8]  J. Willis,et al.  Deep-ocean contribution to sea level and energy budget not detectable over the past decade , 2014 .

[9]  M. Watkins,et al.  Improved methods for observing Earth's time variable mass distribution with GRACE using spherical cap mascons , 2015 .

[10]  Michael B. Heflin,et al.  Simultaneous estimation of global present-day water transport and glacial isostatic adjustment , 2010 .

[11]  G. R. Stuhne,et al.  Reconciling the ICE‐6G_C reconstruction of glacial chronology with ice sheet dynamics: The cases of Greenland and Antarctica , 2015 .

[12]  Wenke Sun,et al.  An increase in the rate of global mean sea level rise since 2010 , 2015 .

[13]  D. Chambers,et al.  GRACE, time-varying gravity, Earth system dynamics and climate change , 2014, Reports on progress in physics. Physical Society.

[14]  J. Kusche,et al.  Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model , 2009 .

[15]  Jens Schröter,et al.  Revisiting the contemporary sea-level budget on global and regional scales , 2016, Proceedings of the National Academy of Sciences.

[16]  E. Ivins,et al.  Antarctic contribution to sea level rise observed by GRACE with improved GIA correction , 2013 .

[17]  M. R. van den Broeke,et al.  A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009 , 2013, Science.

[18]  John C. Ries,et al.  The unexpected signal in GRACE estimates of $$C_{20}$$C20 , 2017 .

[19]  T. Bolch,et al.  The Randolph Glacier inventory: a globally complete inventory of glaciers , 2014 .

[20]  Beate Klinger,et al.  The new ITSG-Grace2016 release , 2016 .

[21]  Reply to Comment by W. R. Peltier, D. F. Argus, and R. Drummond on “An Assessment of the ICE6G_C (VM5a) Glacial Isostatic Adjustment Model” , 2017 .

[22]  R. Forsberg,et al.  Mass changes in Arctic ice caps and glaciers: implications of regionalizing elevation changes , 2013 .

[23]  Matthew Rodell,et al.  Groundwater Storage Changes: Present Status from GRACE Observations , 2016, Surveys in Geophysics.

[24]  Donald F. Argus,et al.  Comment on the paper by Purcell et al (2016) entitled “An Assessment of the ICE-6G_C (VM5a) glacial isostatic adjustment model”: The ICE-6G_C (VM5a) GIA model , 2017 .

[25]  Ingo Sasgen,et al.  Wiener optimal filtering of GRACE data , 2006 .

[26]  I. Sasgen,et al.  Geodetic measurements reveal similarities between post–Last Glacial Maximum and present-day mass loss from the Greenland ice sheet , 2016, Science Advances.

[27]  Byron D. Tapley,et al.  GRACE detects coseismic and postseismic deformation from the Sumatra‐Andaman earthquake , 2007 .

[28]  A. Cazenave,et al.  Terrestrial Waters and Sea Level Variations on Interannual Time Scale , 2011 .

[29]  F. Rémy,et al.  Snow- and ice-height change in Antarctica from satellite gravimetry and altimetry data , 2014 .

[30]  Jean-François Crétaux,et al.  Seasonal and interannual geocenter motion from SLR and DORIS measurements: Comparison with surface loading data , 2002 .

[31]  Andrew J. Plater,et al.  Book reviewSea-level change: Roger Revelle; Studies in Geophysics, National Research Council, National Academy Press, Washington, DC, 1990; xii + 246 pp.; USD 29.95, GBP 25.75; ISBN 0-309-04039 , 1992 .

[32]  A. Cazenave,et al.  The Sea Level Budget Since 2003: Inference on the Deep Ocean Heat Content , 2015, Surveys in Geophysics.

[33]  M. Watkins,et al.  GRACE Measurements of Mass Variability in the Earth System , 2004, Science.

[34]  D. Chambers,et al.  Relative contributions of ocean mass and deep steric changes to sea level rise between 1993 and 2013 , 2014 .

[35]  J. Ray,et al.  Geocenter motion and its geodetic and geophysical implications , 2012 .

[36]  Zizhan Zhang,et al.  Reducing leakage error in GRACE-observed long-term ice mass change: a case study in West Antarctica , 2015, Journal of Geodesy.

[37]  J. Famiglietti,et al.  A decade of sea level rise slowed by climate-driven hydrology , 2016, Science.

[38]  Sergei Rudenko,et al.  Improved Sea Level record over the satellite altimetry era (1993-2010) from the Climate Change Initiative project , 2015 .

[39]  M. Cheng,et al.  Geocenter Variations from Analysis of SLR Data , 2013 .

[40]  M. Rothacher,et al.  Low-degree earth deformation from reprocessed GPS observations , 2010 .

[41]  Ernst J. O. Schrama,et al.  Signal and noise in Gravity Recovery and Climate Experiment (GRACE) observed surface mass variations , 2007 .

[42]  D. Chambers,et al.  Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output , 2008 .

[43]  M. Balmaseda,et al.  Evaluation of the ECMWF ocean reanalysis system ORAS4 , 2013 .

[44]  Isabella Velicogna,et al.  Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time‐variable gravity data , 2014 .

[45]  Uncertainty in ocean mass trends from GRACE , 2010 .

[46]  C. Jekeli Modifying Stokes' function to reduce the error of geoid undulation computations , 1981 .

[47]  Srinivas Bettadpur,et al.  High‐resolution CSR GRACE RL05 mascons , 2016 .

[48]  S. Swenson,et al.  Post‐processing removal of correlated errors in GRACE data , 2006 .

[49]  P. L. Traon,et al.  Performance and quality assessment of the global ocean eddy-permitting physical reanalysis GLORYS2V4. , 2017 .

[50]  S. Levitus,et al.  World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010 , 2012 .

[51]  Jens Schröter,et al.  Global surface mass from a new combination of GRACE, modelled OBP and reprocessed GPS data , 2012 .

[52]  D. Chambers Calculating trends from GRACE in the presence of large changes in continental ice storage and ocean mass , 2009 .

[53]  D. Saint‐Martin,et al.  Quantifying the sources of spread in climate change experiments , 2012 .

[54]  John Gould,et al.  Argo: The Challenge of Continuing 10 Years of Progress [In: Special Issue on the Revolution of Global Ocean Forecasting - GODAE: 10 Years of Achievement] , 2009 .

[55]  M. Watkins,et al.  Observations of tidally coherent diurnal and semidiurnal variations in the geocenter , 1997 .

[56]  Matt A. King,et al.  A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea‐level change and present‐day uplift rates , 2012 .

[57]  J. Kusche,et al.  A new unified approach to determine geocentre motion using space geodetic and GRACE gravity data , 2016 .

[58]  Louise Sandberg Sørensen,et al.  Scatter of mass changes estimates at basin scale for Greenland and Antarctica , 2013 .

[59]  A. Cazenave,et al.  Total land water storage change over 2003–2013 estimated from a global mass budget approach , 2015 .

[60]  J. Camp,et al.  Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution , 2013, Journal of Glaciology.

[61]  F. Landerer,et al.  Accuracy of scaled GRACE terrestrial water storage estimates , 2012 .

[62]  G. Johnson,et al.  Deep and abyssal ocean warming from 35 years of repeat hydrography , 2016 .

[63]  Josh K. Willis,et al.  Balancing the Sea Level Budget , 2011 .

[64]  P. Tregoning,et al.  Journal of Geophysical Research: Solid Earth An assessment of the ICE6G_C(VM5a) glacial isostatic adjustment model , 2016 .

[65]  W. Tad Pfeffer,et al.  Recent contributions of glaciers and ice caps to sea level rise , 2012, Nature.

[66]  F. Bryan,et al.  Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE , 1998 .

[67]  Matt A. King,et al.  Uncertainty in geocenter estimates in the context of ITRF2014 , 2017 .

[68]  J. Wahr,et al.  Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada , 2012 .

[69]  S. Swenson,et al.  Accuracy of GRACE mass estimates , 2006 .

[70]  M. Cheng,et al.  Deceleration in the Earth's oblateness , 2013 .

[71]  R. Fisher Statistical methods for research workers , 1927, Protoplasma.

[72]  Matt A. King,et al.  An assessment of forward and inverse GIA solutions for Antarctica , 2016, Journal of geophysical research. Solid earth.

[73]  Don P. Chambers,et al.  Evaluation of Release-05 GRACE time-variable gravity coefficients over the ocean , 2012 .

[74]  Eric Rignot,et al.  A Reconciled Estimate of Ice-Sheet Mass Balance , 2012, Science.

[75]  Srinivas Bettadpur,et al.  The pole tide and its effect on GRACE time‐variable gravity measurements: Implications for estimates of surface mass variations , 2015 .