Properties of normalized radial visualizations

This paper defines a class of normalized radial visualizations (NRVs) that includes the RadViz mapping onto the two-dimensional unit disk. An NRV maps high-dimensional records into lower dimensional space, where records’ images are convex combinations of the dimensions (called dimensional anchors) laid out in two dimensions as labels on a circle and in higher dimensions on the surface of a hypersphere. As radial visualizations have evolved, conjectures have been proposed for invariants, such as lines mapping to lines, and convex sets to convex sets. Some have been informally proven for RadViz. We formally establish these properties for all NRVs and illustrate them using RadViz. An extensive theory of Parallel Coordinates has been developed elsewhere with great benefit to the visualization community. Our theory should provide similar benefits for radial visualization users. We show that an NRV is the composition of a perspective and an affine transformation. This projective transformation characterization leads to a number of properties including line, point ordering and convexity invariance. Knowledge of these properties suggests that the visual existence of structure in the data can guide a visualization researcher in further productive exploration of the data. We show the established properties hold regardless of whether or not the dimensional anchors lie on the circle or the hypersphere. These insights also suggest directions for future NRV work, such as rotational preprocessing to separate data in RadViz and NRVs for better cluster visualization.

[1]  Temel Kayikçioglu,et al.  Reconstructing ellipsoids from three projection contours , 2000, Pattern Recognit. Lett..

[2]  Luigi Di Caro,et al.  Analyzing the Role of Dimension Arrangement for Data Visualization in Radviz , 2010, PAKDD.

[3]  Robert R. Korfhage,et al.  Visualization of a Document Collection: The VIBE System , 1993, Inf. Process. Manag..

[4]  Aidong Zhang,et al.  Advanced Analysis of Gene Expression Microarray Data , 2006, Science, Engineering, and Biology Informatics.

[5]  Georges G. Grinstein,et al.  DNA visual and analytic data mining , 1997 .

[6]  Aidong Zhang,et al.  VizStruct for visualization of genome-wide SNP analyses , 2006, Bioinform..

[7]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .

[8]  Günter Wyszecki On Projective Transformations of the CIE-Chromaticity Diagram , 1956 .

[9]  W. Xiao,et al.  Distinguishing lung tumours from normal lung based on a small set of genes. , 2007, Lung cancer.

[10]  R. R. Hocking Methods and Applications of Linear Models: Regression and the Analysis of Variance , 2003 .

[11]  Matthew O. Ward,et al.  Clutter Reduction in Multi-Dimensional Data Visualization Using Dimension Reordering , 2004, IEEE Symposium on Information Visualization.

[12]  Urska Cvek,et al.  Multidimensional Visualization Tools for Analysis of Expression Data , 2009 .

[13]  Jonathan C. Roberts,et al.  Bifocal Radial Visualization of Intranet Search Results using Image Caching , 2007, TPCG.

[14]  Georges G. Grinstein,et al.  Vectorized Radviz and Its Application to Multiple Cluster Datasets , 2008, IEEE Transactions on Visualization and Computer Graphics.

[15]  V. Leitáo,et al.  Computer Graphics: Principles and Practice , 1995 .

[16]  Stefan Berchtold,et al.  Similarity clustering of dimensions for an enhanced visualization of multidimensional data , 1998, Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258).

[17]  G. Santucci,et al.  SpringView: cooperation of radviz and parallel coordinates for view optimization and clutter reduction , 2005, Coordinated and Multiple Views in Exploratory Visualization (CMV'05).

[18]  W. V. Hodge,et al.  Methods of algebraic geometry , 1947 .

[19]  Eser Kandogan Star Coordinates: A Multi-dimensional Visualization Technique with Uniform Treatment of Dimensions , 2000 .

[20]  Thomas Lewiner,et al.  Exploratory visualization based on multidimensional transfer functions and star coordinates , 2006, 2006 19th Brazilian Symposium on Computer Graphics and Image Processing.

[21]  J. O´Rourke,et al.  Computational Geometry in C: Arrangements , 1998 .

[22]  Stan Birchheld,et al.  An Introduction to Projective Geometry for Computer Vision , 2022 .

[23]  Georges G. Grinstein,et al.  High-Dimensional Visualization Support for Data Mining Gene Expression Data , 2001 .

[24]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[25]  Maria Cristina Ferreira de Oliveira,et al.  Viz3D: effective exploratory visualization of large multidimensional data sets , 2004, Proceedings. 17th Brazilian Symposium on Computer Graphics and Image Processing.

[26]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[27]  André Csillaghy,et al.  SphereViz - Data Exploration in a Virtual Reality Environment , 2007, 2007 11th International Conference Information Visualization (IV '07).

[28]  Abe Shenitzer,et al.  Geometric Transformations III: Affine and Projective Transformations , 1973 .

[29]  Hans-Peter Kriegel,et al.  'Circle Segments': A Technique for Visually Exploring Large Multidimensional Data Sets , 1996 .

[30]  James C. Miller,et al.  Computer graphics principles and practice, second edition , 1992, Comput. Graph..

[31]  I. Carlbom,et al.  Planar Geometric Projections and Viewing Transformations , 1978, CSUR.

[32]  Georges G. Grinstein,et al.  Table visualizations: a formal model and its applications , 2000 .

[33]  Alfred Inselberg,et al.  Parallel Coordinates: Visual Multidimensional Geometry and Its Applications , 2003, KDIR.

[34]  Maurice d' Ocagne Coordonnées parallèles et axiales Méthode de Transformation géométrique et Procédé nouveau de Calcul graphique, déduits de la Considération des Coordonnées parallèles , 1885, Nature.

[35]  Krishna Rajan,et al.  Visualization of high-dimensional combinatorial catalysis data. , 2009, Journal of combinatorial chemistry.

[36]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[37]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[38]  T. G. Room,et al.  A background (natural, synthetic and algebraic) to geometry , 1969 .

[39]  Eser Kandogan,et al.  Visualizing multi-dimensional clusters, trends, and outliers using star coordinates , 2001, KDD '01.

[40]  Richard F. Riesenfeld,et al.  A Survey of Radial Methods for Information Visualization , 2009, IEEE Transactions on Visualization and Computer Graphics.

[41]  Matthew O. Ward,et al.  Interactive Data Visualization - Foundations, Techniques, and Applications , 2010 .

[42]  Georges G. Grinstein,et al.  A Visual Analytics Model Applied to Lead Generation Library Design in Drug Discovery , 2009, 2009 13th International Conference Information Visualisation.

[43]  J. Stasko,et al.  Focus+context display and navigation techniques for enhancing radial, space-filling hierarchy visualizations , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[44]  Haim Levkowitz,et al.  From Visual Data Exploration to Visual Data Mining: A Survey , 2003, IEEE Trans. Vis. Comput. Graph..

[45]  Denis Lalanne,et al.  Visual Analysis of Corporate Network Intelligence: Abstracting and Reasoning on Yesterdays for Acting Today , 2007, VizSEC.

[46]  Olga Stepánková,et al.  Visualization of Trends Using RadViz , 2009, ISMIS.

[47]  Urska Cvek,et al.  High-Dimensional Visualizations , 2002 .

[48]  D Haussler,et al.  Knowledge-based analysis of microarray gene expression data by using support vector machines. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[49]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[50]  E. M. Wright,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.