Rademacher-Sketch: A Dimensionality-Reducing Embedding for Sum-Product Norms, with an Application to Earth-Mover Distance

Consider a sum-product normed space, i.e. a space of the form $Y=\ell_1^n \otimes X$, where X is another normed space. Each element in Y consists of a length-n vector of elements in X, and the norm of an element in Y is the sum of the norms of its coordinates. In this paper we show a constant-distortion embedding from the normed space $\ell_1^n \otimes X$ into a lower-dimensional normed space $\ell_1^{n'} \otimes X$, where n′≪n is some value that depends on the properties of the normed space X (namely, on its Rademacher dimension). In particular, composing this embedding with another well-known embedding of Indyk [18], we get an O(1/e)-distortion embedding from the earth-mover metric EMDΔ on the grid [Δ]2 to $\ell_1^{\Delta^{O(\epsilon)}} \otimes {\sf{EEMD}}_{\Delta^{\epsilon }}$ (where EEMD is a norm that generalizes earth-mover distance). This embedding is stronger (and simpler) than the sketching algorithm of Andoni et al [4], which maps EMDΔ with O(1/e) approximation into sketches of size ΔO(e).

[1]  Alexandr Andoni,et al.  Streaming Algorithms via Precision Sampling , 2010, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[2]  Christophe Chefd'Hotel,et al.  Intensity-based image registration using Earth Mover's Distance , 2007, SPIE Medical Imaging.

[3]  J. Lindenstrauss,et al.  Handbook of geometry of Banach spaces , 2001 .

[4]  Noga Alon,et al.  The Space Complexity of Approximating the Frequency Moments , 1999 .

[5]  Gideon Schechtman,et al.  Planar Earthmover is not in L_1 , 2005, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[6]  Alexandr Andoni,et al.  Near-optimal sublinear time algorithms for Ulam distance , 2010, SODA '10.

[7]  Piotr Indyk,et al.  Algorithmic applications of low-distortion geometric embeddings , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[8]  David P. Woodruff,et al.  Open Problems in Data Streams, Property Testing, and Related Topics , 2011 .

[9]  Noam Nisan,et al.  Pseudorandom generators for space-bounded computations , 1990, STOC '90.

[10]  Alexandr Andoni,et al.  Overcoming the l1 non-embeddability barrier: algorithms for product metrics , 2009, SODA.

[11]  Piotr Indyk,et al.  A near linear time constant factor approximation for Euclidean bichromatic matching (cost) , 2007, SODA '07.

[12]  CharikarMoses,et al.  On the impossibility of dimension reduction in l1 , 2005 .

[13]  Christopher J. Taylor,et al.  Transforming Pixel Signatures into an Improved Metric Space , 2002, BMVC.

[14]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[15]  Alexandr Andoni,et al.  Near Linear Lower Bound for Dimension Reduction in L1 , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[16]  Trevor Darrell,et al.  Fast contour matching using approximate earth mover's distance , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[17]  Jirí Matousek,et al.  Low-Distortion Embeddings of Finite Metric Spaces , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[18]  Micha Sharir,et al.  Vertical Decomposition of Shallow Levels in 3-Dimensional Arrangements and Its Applications , 1999, SIAM J. Comput..

[19]  Alexandr Andoni,et al.  Approximating Edit Distance in Near-Linear Time , 2012, SIAM J. Comput..

[20]  Yuxin Deng,et al.  The Kantorovich Metric in Computer Science: A Brief Survey , 2009, QAPL.

[21]  Trevor Darrell,et al.  Fast contour matching using approximate earth mover's distance , 2004, CVPR 2004.

[22]  Joachim M. Buhmann,et al.  Empirical evaluation of dissimilarity measures for color and texture , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[23]  Pankaj K. Agarwal,et al.  A near-linear constant-factor approximation for euclidean bipartite matching? , 2004, SCG '04.

[24]  Peter J. Bickel,et al.  The Earth Mover's distance is the Mallows distance: some insights from statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[25]  David P. Woodruff,et al.  Efficient Sketches for Earth-Mover Distance, with Applications , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[26]  Kenneth Ward Church,et al.  Nonlinear Estimators and Tail Bounds for Dimension Reduction in l1 Using Cauchy Random Projections , 2006, J. Mach. Learn. Res..

[27]  Pankaj K. Agarwal,et al.  Approximation algorithms for bipartite and non-bipartite matching in the plane , 1999, SODA '99.

[28]  Nathan Linial Finite metric spaces: combinatorics, geometry and algorithms , 2002, SCG '02.

[29]  B. Maurey,et al.  Chapter 30 - Type, Cotype and K-Convexity , 2003 .

[30]  L. Kantorovich On the Translocation of Masses , 2006 .

[31]  Pravin M. Vaidya Geometry helps in matching , 1988, STOC '88.

[32]  Moses Charikar,et al.  Similarity estimation techniques from rounding algorithms , 2002, STOC '02.