Max-Planck-Institut fMathematik in den Naturwissenschaften Leipzig

[1]  John E. Beasley,et al.  Constraint Handling in Genetic Algorithms: The Set Partitioning Problem , 1998, J. Heuristics.

[2]  Jeffrey D. Scargle,et al.  An algorithm for optimal partitioning of data on an interval , 2003, IEEE Signal Processing Letters.

[3]  Noam Nisan,et al.  Bidding and allocation in combinatorial auctions , 2000, EC '00.

[4]  Andrew B. Kahng,et al.  Recent developments in netlist partitioning: a survey , 1995 .

[5]  Ronald I. Becker,et al.  Max-min partitioning of grid graphs into connected components , 1998 .

[6]  Ronald M. Harstad,et al.  Computationally Manageable Combinational Auctions , 1998 .

[7]  Onn Shehory,et al.  Coalition structure generation with worst case guarantees , 2022 .

[8]  Chien-Hua M. Lin,et al.  An efficient algorithm for the complete set partitioning problem , 1983, Discret. Appl. Math..

[9]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[10]  Jean-Marc Vincent,et al.  Building Optimal Macroscopic Representations of Complex Multi-agent Systems - Application to the Spatial and Temporal Analysis of International Relations Through News Aggregation , 2014, Trans. Comput. Collect. Intell..

[11]  L. Schnorr,et al.  Evaluating trace aggregation for performance visualization of large distributed systems , 2014, 2014 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS).

[12]  Jean-Marc Vincent,et al.  Trace Management and Analysis for Embedded Systems , 2013, 2013 IEEE 7th International Symposium on Embedded Multicore Socs.

[13]  Jean-Marc Vincent,et al.  A spatiotemporal data aggregation technique for performance analysis of large-scale execution traces , 2014, 2014 IEEE International Conference on Cluster Computing (CLUSTER).

[14]  Majid Sarrafzadeh,et al.  Two-Way and Multiway Partitioning of a Set of Intervals for Clique-Width Maximization , 1999, Algorithmica.

[15]  Rudolf Müller,et al.  Tractable cases of the winner determination problem , 2006 .

[16]  Friedrich Eisenbrand,et al.  Set Covering with Ordered Replacement: Additive and Multiplicative Gaps , 2010, IPCO.

[17]  Uriel G. Rothblum,et al.  Technical Note—A Partitioning Problem with Additive Objective with an Application to Optimal Inventory Groupings for Joint Replenishment , 1982 .

[18]  Jean-Marc Vincent,et al.  A Generic Algorithmic Framework to Solve Special Versions of the Set Partitioning Problem , 2014, 2014 IEEE 26th International Conference on Tools with Artificial Intelligence.

[19]  F. Guibault,et al.  A New Formulation of the Set Covering Problem for Metaheuristic Approaches , 2013 .

[20]  D. Lehmann,et al.  The Winner Determination Problem , 2003 .

[21]  Michael Dom,et al.  Set Cover with Almost Consecutive Ones , 2008, Encyclopedia of Algorithms.

[22]  Pascal Pons,et al.  Post-processing hierarchical community structures: Quality improvements and multi-scale view , 2006, Theor. Comput. Sci..

[23]  Ted K. Ralphs,et al.  Integer and Combinatorial Optimization , 2013 .

[24]  Anita Schöbel,et al.  Set covering with almost consecutive ones property , 2004, Discret. Optim..

[25]  Awi Federgruen,et al.  Structured Partitioning Problems , 1991, Oper. Res..

[26]  Dorothea Wagner,et al.  Solving Geometric Covering Problems by Data Reduction , 2004, ESA.

[27]  R. Vidal Optimal Partition of an Interval — The Discrete Version , 1993 .

[28]  Nicholas R. Jennings,et al.  Coalition Structure Generation : Dynamic Programming Meets Anytime Optimization , 2008 .

[29]  Robin Lamarche-Perrin,et al.  Macroscopic Observation of Large-Scale Multi-agent Systems , 2014, 2014 Brazilian Conference on Intelligent Systems.

[30]  D. Yun Yeh,et al.  A Dynamic Programming Approach to the Complete Set Partitioning Problem , 1986, BIT.

[31]  Marco A. Boschetti,et al.  A dual ascent procedure for the set partitioning problem , 2008, Discret. Optim..

[32]  Morteza Zadimoghaddam,et al.  Optimal Coalition Structure Generation in Cooperative Graph Games , 2013, AAAI.

[33]  Sarvapali D. Ramchurn,et al.  An Anytime Algorithm for Optimal Coalition Structure Generation , 2014, J. Artif. Intell. Res..

[34]  Manfred W. Padberg,et al.  Set Covering, Packing and Partitioning Problems , 2009, Encyclopedia of Optimization.

[35]  Aristide Mingozzi,et al.  Partitioning a matrix with non-guillotine cuts to minimize the maximum cos , 2002, Discret. Appl. Math..

[36]  Morteza Zadimoghaddam,et al.  Cooperative weakest link games , 2014, AAMAS.

[37]  J. P. Arabeyre,et al.  The Airline Crew Scheduling Problem: A Survey , 1969 .

[38]  E. Balas,et al.  Set Partitioning: A survey , 1976 .

[39]  Subhash Suri,et al.  BOB: Improved winner determination in combinatorial auctions and generalizations , 2003, Artif. Intell..

[40]  Imre Csiszár,et al.  Axiomatic Characterizations of Information Measures , 2008, Entropy.

[41]  P. Brucker On the Complexity of Clustering Problems , 1978 .

[42]  János D. Pintér,et al.  Set partition by globally optimized cluster seed points , 1991 .

[43]  Torsten Suel,et al.  Approximation algorithms for array partitioning problems , 2005, J. Algorithms.

[44]  Chandra Chekuri,et al.  Approximation Algorithms for Submodular Multiway Partition , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[45]  Jon Freeman,et al.  Parallel Algorithms for Depth-First Search , 1991 .

[46]  Tuomas Sandholm,et al.  Algorithm for optimal winner determination in combinatorial auctions , 2002, Artif. Intell..