Finite-time and asymptotic left inversion of nonlinear time-delay systems

In this paper we investigate the left invertibility problem for a class of nonlinear time-delay systems. In both cases of time delay systems with and without internal dynamics the invertibility conditions are given. A new approach based on the use of higher order sliding mode observer is developed for finite-time left invertibility and for asymptotic left inversion. Causal and non-causal estimations of the unknown inputs are respectively discussed. The results are illustrated by numerical examples in order to show the efficiency of the method and its limits.

[1]  Jean-Pierre Richard,et al.  Time-delay systems: an overview of some recent advances and open problems , 2003, Autom..

[2]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[3]  H. Koivo,et al.  An observer theory for time delay systems , 1976 .

[4]  Malek Ghanes,et al.  Observer Design for Nonlinear Systems Under Unknown Time-Varying Delays , 2013, IEEE Transactions on Automatic Control.

[5]  Gang Zheng,et al.  Observability of linear systems with commensurate delays and unknown inputs , 2014, Autom..

[6]  C. Moog,et al.  New insights on the analysis of nonlinear time-delay systems , 2004, CDC.

[7]  Arie Levant,et al.  Higher-order sliding modes, differentiation and output-feedback control , 2003 .

[8]  Gang Zheng,et al.  Identifiability and Observability of Nonlinear Time-Delay Systems with Unknown Inputs , 2016 .

[9]  Jean-Pierre Barbot,et al.  Left inversion of nonlinear time delay system , 2014, 53rd IEEE Conference on Decision and Control.

[10]  Alfredo Germani,et al.  Input‐output linearization with delay cancellation for nonlinear delay systems: the problem of the internal stability , 2003 .

[11]  Witold Respondek,et al.  Right and Left Invertibility of Nonlinear Control Systems , 2017 .

[12]  C. Moog,et al.  Nonlinear Control Systems: An Algebraic Setting , 1999 .

[13]  Giulio Caravagna,et al.  Formal Modeling and Simulation of Biological Systems with Delays , 2011 .

[14]  Alfredo Germani,et al.  An asymptotic state observer for a class of nonlinear delay systems , 2001, Kybernetika.

[15]  Driss Boutat,et al.  Finite time observation of nonlinear time-delay systems with unknown inputs , 2010 .

[16]  J. Massey,et al.  Invertibility of linear time-invariant dynamical systems , 1969 .

[17]  Svetoslav Nikolov,et al.  Stability Analysis of Time Delay Model of Crosstalk between ERK and STAT5a Interaction , 2007 .

[18]  L. Silverman Inversion of multivariable linear systems , 1969 .

[19]  Yuri B. Shtessel,et al.  Higher order sliding modes , 2008 .

[20]  Claude H. Moog,et al.  Coordinates transformations in nonlinear time-delay systems , 2014, 53rd IEEE Conference on Decision and Control.

[21]  Claude H. Moog,et al.  On the observer canonical form for Nonlinear Time–Delay Systems , 2011 .

[22]  Toshiki Oguchi,et al.  Input-output linearization of retarded non-linear systems by using an extension of Lie derivative , 2002 .

[23]  Driss Boutat,et al.  Causal observability of nonlinear time-delay systems with unknown inputs , 2010, 49th IEEE Conference on Decision and Control (CDC).

[24]  Claude H. Moog,et al.  Linearization of time-delay systems by input-output injection and output transformation , 2013, Autom..

[25]  L. Fridman,et al.  Higher‐order sliding‐mode observer for state estimation and input reconstruction in nonlinear systems , 2008 .

[26]  Arie Levant,et al.  Homogeneity approach to high-order sliding mode design , 2005, Autom..

[27]  Sahjendra N. Singh A modified algorithm for invertibility in nonlinear systems , 1981 .

[28]  Jan Jezek Rings of skew polynomials in algebraical approach to control theory , 1996, Kybernetika.

[29]  R. Hirschorn Invertibility of multivariable nonlinear control systems , 1979 .

[30]  Driss Boutat,et al.  Identification of the delay parameter for nonlinear time-delay systems with unknown inputs , 2013, Autom..

[31]  Xiaohua Xia,et al.  Analysis of nonlinear time-delay systems using modules over non-commutative rings , 2002, Autom..

[32]  Salim Ibrir,et al.  Adaptive observers for time-delay nonlinear systems in triangular form , 2009, Autom..

[33]  Wilfrid Perruquetti,et al.  Unknown input observer for linear time-delay systems , 2015, Autom..

[34]  Avrie Levent,et al.  Robust exact differentiation via sliding mode technique , 1998, Autom..

[35]  Ron J. Patton,et al.  An observer design for linear time-delay systems , 2002, IEEE Trans. Autom. Control..

[36]  Driss Boutat,et al.  Utility of high-order sliding mode differentiators for dynamical left inversion problems , 2015 .

[37]  Toshiki Oguchi A finite spectrum assignment for retarded non-linear systems and its solvability condition , 2007, Int. J. Control.

[38]  Stephen John Hogan,et al.  Time-Delayed Models of Gene Regulatory Networks , 2015, Comput. Math. Methods Medicine.

[39]  Martín Velasco-Villa,et al.  The disturbance decoupling problem for time-delay nonlinear systems , 2000, IEEE Trans. Autom. Control..

[40]  Driss Boutat,et al.  On Observation of Time-Delay Systems With Unknown Inputs , 2011, IEEE Transactions on Automatic Control.

[41]  Vladimir L. Kharitonov,et al.  Exponential estimates for time delay systems , 2004, Syst. Control. Lett..

[42]  Martín Velasco-Villa,et al.  The structure of nonlinear time delay systems , 2000, Kybernetika.