Edge choosability of planar graphs without 5-cycles with a chord
暂无分享,去创建一个
[1] Fred Galvin,et al. The List Chromatic Index of a Bipartite Multigraph , 1995, J. Comb. Theory B.
[2] Wang Weifan. Edge choosability of planar graphs without short cycles , 2005 .
[3] Roland Häggkvist,et al. New Bounds on the List-Chromatic Index of the Complete Graph and Other Simple Graphs , 1997, Combinatorics, Probability and Computing.
[4] Bojan Mohar,et al. Graphs of degree 4 are 5-edge-choosable , 1999, J. Graph Theory.
[5] Ko-Wei Lih,et al. Choosability, Edge Choosability, and Total Choosability of Outerplane Graphs , 2001, Eur. J. Comb..
[6] Li Zhang,et al. Edge choosability of planar graphs without small cycles , 2004, Discret. Math..
[7] Douglas R. Woodall. Edge-choosability of multicircuits , 1999, Discret. Math..
[8] Ko-Wei Lih,et al. The 4-choosability of planar graphs without 6-cycles , 2001, Australas. J Comb..
[9] Bojan Mohar,et al. Graphs of degree 4 are 5-edge-choosable , 1999 .
[10] Alexandr V. Kostochka,et al. List edge chromatic number of graphs with large girth , 1992, Discret. Math..
[11] Alexandr V. Kostochka,et al. List Edge and List Total Colourings of Multigraphs , 1997, J. Comb. Theory B.
[12] Ko-Wei Lih,et al. Choosability and Edge Choosability of Planar Graphs without Intersecting Triangles , 2002, SIAM J. Discret. Math..
[13] Ko-Wei Lih,et al. Choosability and edge choosability of planar graphs without five cycles , 2002, Appl. Math. Lett..
[14] Wang Weifan. The linear 2-arboricity of planar graphs without 4-cycles , 2006 .