Analysis pipelines for calcium imaging data

Calcium imaging is a popular tool among neuroscientists because of its capability to monitor in vivo large neural populations across weeks with single neuron and single spike resolution. Before any downstream analysis, the data needs to be pre-processed to extract the location and activity of the neurons and processes in the observed field of view. The ever increasing size of calcium imaging datasets necessitates scalable analysis pipelines that are reproducible and fully automated. This review focuses on recent methods for addressing the pre-processing problems that arise in calcium imaging data analysis, and available software tools for high throughput analysis pipelines.

[1]  Michael Unser,et al.  A pyramid approach to subpixel registration based on intensity , 1998, IEEE Trans. Image Process..

[2]  Amiram Grinvald,et al.  Accurate spike estimation from noisy calcium signals for ultrafast three-dimensional imaging of large neuronal populations in vivo , 2016, Nature Communications.

[3]  Wolfgang Losert,et al.  Particle Tracking Facilitates Real Time Capable Motion Correction in 2D or 3D Two-Photon Imaging of Neuronal Activity , 2017, Front. Neural Circuits.

[4]  Spencer L. Smith,et al.  Parallel processing of visual space by neighboring neurons in mouse visual cortex , 2010, Nature Neuroscience.

[5]  Sina Farsiu,et al.  Information-Theoretic Approach and Fundamental Limits of Resolving Two Closely Timed Neuronal Spikes in Mouse Brain Calcium Imaging , 2018, IEEE Transactions on Biomedical Engineering.

[6]  Andrea Giovannucci,et al.  Anscombe Meets Hough: Noise Variance Stablization Via Parametric Model Estimation , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[7]  H. Sebastian Seung,et al.  Automatic Neuron Detection in Calcium Imaging Data Using Convolutional Networks , 2016, NIPS.

[8]  Sten Rüdiger,et al.  SamuROI, a Python-Based Software Tool for Visualization and Analysis of Dynamic Time Series Imaging at Multiple Spatial Scales , 2017, Front. Neuroinform..

[9]  Liam Paninski,et al.  Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data , 2016, eLife.

[10]  Karel Svoboda,et al.  Kilohertz frame-rate two-photon tomography , 2018, bioRxiv.

[11]  Paul Fearnhead,et al.  Fast nonconvex deconvolution of calcium imaging data. , 2018, Biostatistics.

[12]  Liam Paninski,et al.  Fast online deconvolution of calcium imaging data , 2016, PLoS Comput. Biol..

[13]  Takashi Kawashima,et al.  Mapping brain activity at scale with cluster computing , 2014, Nature Methods.

[14]  Germán Sumbre,et al.  An integrated calcium imaging processing toolbox for the analysis of neuronal population dynamics , 2017, PLoS Comput. Biol..

[15]  Daniela Witten,et al.  EXACT SPIKE TRAIN INFERENCE VIA ℓ0 OPTIMIZATION. , 2017, The annals of applied statistics.

[16]  Ying Ma,et al.  Penalized matrix decomposition for denoising, compression, and improved demixing of functional imaging data , 2018, bioRxiv.

[17]  Sam E Benezra,et al.  Supplemental Information Population-level Representation of a Temporal Sequence Underlying Song Production in the Zebra Finch , 2022 .

[18]  Mario Dipoppa,et al.  Suite2p: beyond 10,000 neurons with standard two-photon microscopy , 2016, bioRxiv.

[19]  Fan Wang,et al.  MIN1PIPE: A Miniscope 1-Photon-Based Calcium Imaging Signal Extraction Pipeline. , 2018, Cell reports.

[20]  Adam M. Packer,et al.  Extracting regions of interest from biological images with convolutional sparse block coding , 2013, NIPS.

[21]  L. Paninski,et al.  Simultaneous Multi-plane Imaging of Neural Circuits , 2016, Neuron.

[22]  Hakan Inan,et al.  Robust Estimation of Neural Signals in Calcium Imaging , 2017, NIPS.

[23]  E. Pnevmatikakis,et al.  NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data , 2017, Journal of Neuroscience Methods.

[24]  Tomoki Fukai,et al.  Automatic sorting system for large calcium imaging data , 2017, bioRxiv.

[25]  Rafael Yuste,et al.  Multi-scale approaches for high-speed imaging and analysis of large neural populations , 2016, bioRxiv.

[26]  Kenneth D. Harris,et al.  Neuron NeuroView An International Laboratory for Systems and Computational Neuroscience , 2018 .

[27]  Ronald R. Coifman,et al.  Automated cellular structure extraction in biological images with applications to calcium imaging data , 2018, bioRxiv.

[28]  Alipasha Vaziri,et al.  A Guide to Emerging Technologies for Large-Scale and Whole-Brain Optical Imaging of Neuronal Activity. , 2018, Annual review of neuroscience.

[29]  Johannes D. Seelig,et al.  Video-rate volumetric functional imaging of the brain at synaptic resolution , 2016, Nature Neuroscience.

[30]  Toru Aonishi,et al.  Detecting cells using non-negative matrix factorization on calcium imaging data , 2014, Neural Networks.

[31]  Mark J. Schnitzer,et al.  Automated Analysis of Cellular Signals from Large-Scale Calcium Imaging Data , 2009, Neuron.

[32]  Fred A. Hamprecht,et al.  Sparse Space-Time Deconvolution for Calcium Image Analysis , 2014, NIPS.

[33]  Pengcheng Zhou,et al.  CaImAn an open source tool for scalable calcium imaging data analysis , 2019, eLife.

[34]  A. Vaziri,et al.  Video rate volumetric Ca2+ imaging across cortex using seeded iterative demixing (SID) microscopy , 2017, Nature Methods.

[35]  Rafael Yuste,et al.  Fast nonnegative deconvolution for spike train inference from population calcium imaging. , 2009, Journal of neurophysiology.

[36]  Matthias Bethge,et al.  Benchmarking Spike Rate Inference in Population Calcium Imaging , 2016, Neuron.

[37]  Sander W. Keemink,et al.  FISSA: A neuropil decontamination toolbox for calcium imaging signals , 2018, Scientific Reports.

[38]  Quico Spaen,et al.  HNCcorr: A Novel Combinatorial Approach for Cell Identification in Calcium-Imaging Movies , 2017, eNeuro.

[39]  David Pfau,et al.  Simultaneous Denoising, Deconvolution, and Demixing of Calcium Imaging Data , 2016, Neuron.

[40]  Simon R. Schultz,et al.  CosMIC: A Consistent Metric for Spike Inference from Calcium Imaging , 2017 .

[41]  Jérôme Tubiana,et al.  Blind sparse deconvolution for inferring spike trains from fluorescence recordings , 2017, bioRxiv.

[42]  Kenneth D. Harris,et al.  Community-based benchmarking improves spike rate inference from two-photon calcium imaging data , 2018, PLoS Comput. Biol..

[43]  Liam Paninski,et al.  OnACID: Online Analysis of Calcium Imaging Data in Real Time , 2017, bioRxiv.

[44]  Joshua W. Shaevitz,et al.  Automatically tracking neurons in a moving and deforming brain , 2016, PLoS Comput. Biol..

[45]  Adam S. Charles,et al.  Volumetric Two-photon Imaging of Neurons Using Stereoscopy (vTwINS) , 2016, Nature Methods.

[46]  Kenneth D Harris,et al.  Robustness of Spike Deconvolution for Neuronal Calcium Imaging , 2018, The Journal of Neuroscience.

[47]  David S. Greenberg,et al.  Automated correction of fast motion artifacts for two-photon imaging of awake animals , 2009, Journal of Neuroscience Methods.

[48]  Jakob H. Macke,et al.  Fast amortized inference of neural activity from calcium imaging data with variational autoencoders , 2017, NIPS.

[49]  Attila Losonczy,et al.  SIMA: Python software for analysis of dynamic fluorescence imaging data , 2014, Front. Neuroinform..

[50]  Zeguan Wang,et al.  Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio) , 2017, bioRxiv.

[51]  Matthew Eicholtz,et al.  Fast, Simple Calcium Imaging Segmentation with Fully Convolutional Networks , 2017, DLMIA/ML-CDS@MICCAI.

[52]  René Vidal,et al.  Structured Low-Rank Matrix Factorization: Global Optimality, Algorithms, and Applications , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  Eero P. Simoncelli,et al.  Direct Estimation of Firing Rates from Calcium Imaging Data , 2016, 1601.00364.

[54]  Noah Simon,et al.  SCALPEL: EXTRACTING NEURONS FROM CALCIUM IMAGING DATA. , 2017, The annals of applied statistics.

[55]  Pier Luigi Dragotti,et al.  ABLE: An Activity-Based Level Set Segmentation Algorithm for Two-Photon Calcium Imaging Data , 2017, eNeuro.

[56]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[57]  Liam Paninski,et al.  Bayesian spike inference from calcium imaging data , 2013, 2013 Asilomar Conference on Signals, Systems and Computers.

[58]  Dal Hyung Kim,et al.  Pan-neuronal calcium imaging with cellular resolution in freely swimming zebrafish , 2017, Nature Methods.

[59]  R. Prevedel,et al.  Fast volumetric calcium imaging across multiple cortical layers using sculpted light , 2016, Nature Methods.

[60]  Liam Paninski,et al.  Sparse nonnegative deconvolution for compressive calcium imaging: algorithms and phase transitions , 2013, NIPS.

[61]  Alon Rubin,et al.  Tracking the Same Neurons across Multiple Days in Ca2+ Imaging Data , 2017, Cell reports.