Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3

Magnetic layered van der Waals crystals are an emerging class of materials giving access to new physical phenomena, as illustrated by the recent observation of 2D ferromagnetism in Cr2Ge2Te6 and CrI3. Of particular interest in semiconductors is the interplay between magnetism and transport, which has remained unexplored. Here we report magneto-transport measurements on exfoliated CrI3 crystals. We find that tunneling conduction in the direction perpendicular to the crystalline planes exhibits a magnetoresistance as large as 10,000%. The evolution of the magnetoresistance with magnetic field and temperature reveals that the phenomenon originates from multiple transitions to different magnetic states, whose possible microscopic nature is discussed on the basis of all existing experimental observations. This observed dependence of the conductance of a tunnel barrier on its magnetic state is a phenomenon that demonstrates the presence of a strong coupling between transport and magnetism in magnetic van der Waals semiconductors.Layered van der Waals compounds offer opportunities to visit new physical phenomena in two dimensional materials. Here the authors report large tunneling magnetoresistance through exfoliated CrI3 crystals and attribute its evolution to the multiple transitions to different magnetic states.

[1]  M. Calandra,et al.  Density functional perturbation theory for gated two-dimensional heterostructures: Theoretical developments and application to flexural phonons in graphene , 2017, 1705.04973.

[2]  J. P. Remeika,et al.  Magneto-optical properties of ferromagnetic chromium trihalides , 1966 .

[3]  K. Berland,et al.  Spin Signature of Nonlocal Correlation Binding in Metal-Organic Frameworks. , 2015, Physical review letters.

[4]  R. Fowler,et al.  Electron Emission in Intense Electric Fields , 1928 .

[5]  T. Taniguchi,et al.  Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling , 2018, Science.

[6]  Michael A. McGuire,et al.  Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures , 2018, Science.

[7]  Brian C. Sales,et al.  Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI3 , 2015 .

[8]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[9]  Xiaodong Xu,et al.  Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics , 2017, Science Advances.

[10]  E. Palik,et al.  Infrared and microwave magnetoplasma effects in semiconductors , 1970 .

[11]  Qihua Xiong,et al.  Weak Van der Waals Stacking, Wide-Range Band Gap, and Raman Study on Ultrathin Layers of Metal Phosphorus Trichalcogenides. , 2016, ACS nano.

[12]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[13]  Robert H. Swendsen,et al.  Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers , 2015, 1503.00412.

[14]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[15]  V. Eyert,et al.  Electronic structure and magnetic ordering of the semiconducting chromium trihalides CrCl3, CrBr3, and CrI3 , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  G. Guo,et al.  Large magneto-optical Kerr effect in noncollinear antiferromagnets Mn 3 X ( X = Rh , Ir , Pt ) , 2015, 1509.02865.

[17]  Ji Feng,et al.  Coupling the valley degree of freedom to antiferromagnetic order , 2012, Proceedings of the National Academy of Sciences.

[18]  X. Duan,et al.  Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. , 2013, Nature nanotechnology.

[19]  D. Worledge,et al.  Magnetoresistive double spin filter tunnel junction , 2000 .

[20]  C. Cantoni,et al.  Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3-xGeTe2 , 2015, 1508.06959.

[21]  A. MacDonald,et al.  Ferromagnetic semiconductors: moving beyond (Ga,Mn)As , 2005, cond-mat/0503185.

[22]  M. Lenzlinger,et al.  Fowler‐Nordheim Tunneling into Thermally Grown SiO2 , 1969 .

[23]  Tunneling transport of mono- and few-layers magnetic van der Waals MnPS$_3$ , 2016, 1608.03900.

[24]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[25]  J. Simmons Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film , 1963 .

[26]  Xiang Zhang,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[27]  Tarun Patel,et al.  One Million Percent Tunnel Magnetoresistance in a Magnetic van der Waals Heterostructure. , 2018, Nano letters.

[28]  Wang Yao,et al.  Spin and pseudospins in layered transition metal dichalcogenides , 2014, Nature Physics.

[29]  S. Okamoto,et al.  Gate-Controllable Magneto-optic Kerr Effect in Layered Collinear Antiferromagnets. , 2016, Physical review letters.

[30]  F. Moussa,et al.  2D Ising-Like Ferromagnetic Behaviour for the Lamellar Cr2Si2Te6 Compound: A Neutron Scattering Investigation , 1995 .

[31]  Martina Müller,et al.  Magnetoresistance in double spin filter tunnel junctions with nonmagnetic electrodes and its unconventional bias dependence. , 2009, Physical review letters.

[32]  P. Dobson Physics of Semiconductor Devices (2nd edn) , 1982 .

[33]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[34]  Tomasz Dietl,et al.  Dilute ferromagnetic semiconductors: Physics and spintronic structures , 2013, 1307.3429.

[35]  A. I. Lichtenstein,et al.  Ferromagnetic two-dimensional crystals: Single layers of k2cuf4 , 2013, 1311.2410.

[36]  Chi-Hang Lam,et al.  Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides , 2015, 1507.07275.

[37]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[38]  Kai Xiao,et al.  Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material , 2016 .

[39]  Xiao Zhang,et al.  Electric field effect in multilayer Cr2Ge2Te6: a ferromagnetic 2D material , 2017, 1704.08862.

[40]  J. Dillon,et al.  Magnetization, Resonance, and Optical Properties of the Ferromagnet CrI3 , 1965 .

[41]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[42]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[43]  Qiang Sun,et al.  Exfoliating biocompatible ferromagnetic Cr-trihalide monolayers. , 2016, Physical chemistry chemical physics : PCCP.

[44]  Jacek K. Furdyna,et al.  Diluted magnetic semiconductors , 1988 .

[45]  Jinlong Yang,et al.  CrXTe3 (X = Si, Ge) nanosheets: two dimensional intrinsic ferromagnetic semiconductors , 2014 .

[46]  Yanli Wang,et al.  Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009 .