Interactions between confined fields and carriers at interfaces between two-dimensional materials and nanoscale metal architectures

Compact structure-function simulations are needed to examine interactions between confined fields and carriers at interfaces of two-dimensional materials and metal contacts. This work used electron-source discrete dipole simulations of fields confined at metals interfaced with van der Waals materials to compare with measures using scanning transmission electron microscopy (STEM) for energy electron loss spectroscopy (EELS). Bright, dark, and hybrid modes at the interface were mapped at sub-nanometer resolution at resonant energies. Comparing simulation and measurement provided direct, femtosecond measures of confined field dephasing into carriers on topologically insulated surfaces for the first time.

[1]  P. Van Dorpe,et al.  Ultralocal modification of surface plasmons properties in silver nanocubes. , 2012, Nano letters.

[2]  Xiaodong Xu,et al.  Plasmon resonance in individual nanogap electrodes studied using graphene nanoconstrictions as photodetectors. , 2011, Nano letters.

[3]  Thomas Wriedt,et al.  Comparison of computational scattering methods , 1998 .

[4]  Aaron M. Jones,et al.  Ultrafast hot-carrier-dominated photocurrent in graphene. , 2012, Nature nanotechnology.

[5]  L. Brus Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. , 2008, Accounts of chemical research.

[6]  M. Benamara,et al.  Electron Energy Loss Spectroscopy of Hot Electron Transport between Gold Nanoantennas and Molybdenum Disulfide by Plasmon Excitation , 2017 .

[7]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[8]  A. Demming,et al.  Plasmon resonances on metal tips: understanding tip-enhanced Raman scattering. , 2005, The Journal of chemical physics.

[9]  L. Liz‐Marzán,et al.  Modelling the optical response of gold nanoparticles. , 2008, Chemical Society reviews.

[10]  A. Hohenau,et al.  Dark Plasmonic Breathing Modes in Silver Nanodisks , 2012, Nano letters.

[11]  L. Greenlee,et al.  Processing and Characterization of Nanoparticle Coatings for Quartz Crystal Microbalance Measurements , 2015, Journal of research of the National Institute of Standards and Technology.

[12]  W. Sigle,et al.  EFTEM study of surface plasmon resonances in silver nanoholes , 2010 .

[13]  Peter Nordlander,et al.  Graphene-antenna sandwich photodetector. , 2012, Nano letters.

[14]  Stefan Linden,et al.  Spectral imaging of individual split-ring resonators. , 2010, Physical review letters.

[15]  J. Camden,et al.  Spatial, Spectral, and Coherence Mapping of Single-Molecule SERS Active Hot Spots via the Discrete-Dipole Approximation , 2011 .

[16]  D. DeJarnette,et al.  Nanoring structure, spacing, and local dielectric sensitivity for plasmonic resonances in Fano resonant square lattices. , 2014, Optics express.

[17]  C. Afonso,et al.  Sculpting nanometer-sized light landscape with plasmonic nanocolumns. , 2009, The Journal of chemical physics.

[18]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[19]  F. Xia,et al.  Ultrafast graphene photodetector , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[20]  J. Camden,et al.  Characterization of the electron- and photon-driven plasmonic excitations of metal nanorods. , 2012, ACS nano.

[21]  Hyungtak Seo,et al.  Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes. , 2011, Nano letters.

[22]  X. Ling,et al.  First-layer effect in graphene-enhanced Raman scattering. , 2010, Small.

[23]  Ergun Simsek,et al.  Complex electrical permittivity of the monolayer molybdenum disulfide (MoS 2 ) in near UV and visible , 2015 .

[24]  Baptiste Auguié,et al.  Simple accurate approximations for the optical properties of metallic nanospheres and nanoshells. , 2013, Physical chemistry chemical physics : PCCP.

[25]  Drew DeJarnette,et al.  Electron energy loss spectroscopy of gold nanoparticles on graphene , 2014 .

[26]  Joel K. W. Yang,et al.  Surface Plasmon Damping Quantified with an Electron Nanoprobe , 2013, Scientific Reports.

[27]  Alfons G. Hoekstra,et al.  The discrete dipole approximation: an overview and recent developments , 2007 .

[28]  Michael Rubin,et al.  Optical Properties of Soda Lime Silica Glasses , 1985 .

[29]  P. Dobson,et al.  Optical spectroscopy and energy-filtered transmission electron microscopy of surface plasmons in core-shell nanoparticles , 2007 .

[30]  B. Draine,et al.  Fast near field calculations in the discrete dipole approximation for regular rectilinear grids. , 2012, Optics express.

[31]  P. Lambin,et al.  Calculation of the energy loss for an electron passing near giant fullerenes , 1996 .

[32]  S. Romani,et al.  Liquid injection atomic layer deposition of silver nanoparticles , 2010, Nanotechnology.

[33]  Peter Nordlander,et al.  Plasmon-induced hot carrier science and technology. , 2015, Nature nanotechnology.

[34]  Lei Shi,et al.  Enhanced light-matter interactions in graphene-covered gold nanovoid arrays. , 2013, Nano letters.

[35]  Zhe Zhang,et al.  A facile one-pot method to high-quality Ag-graphene composite nanosheets for efficient surface-enhanced Raman scattering. , 2011, Chemical communications.

[36]  James W. M. Chon,et al.  Nanoplasmonics : Advanced Device Applications , 2013 .

[37]  P. Ajayan,et al.  Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene. , 2013, ACS nano.

[38]  Jaime Gómez Rivas,et al.  Universal scaling of the figure of merit of plasmonic sensors. , 2011, ACS nano.

[39]  V. Ryzhii,et al.  Damping mechanism of terahertz plasmons in graphene on heavily doped substrate , 2014 .

[40]  A. N. Grigorenko,et al.  Ju l 2 01 1 Strong Plasmonic Enhancement of Photovoltage in Graphene , 2011 .

[41]  Drew DeJarnette,et al.  Attribution of Fano resonant features to plasmonic particle size, lattice constant, and dielectric wavenumber in square nanoparticle lattices , 2014 .

[42]  Thomas Wriedt,et al.  A Review of Elastic Light Scattering Theories , 1998 .

[43]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[44]  M. Benamara,et al.  Electron Energy Loss Spectroscopy of Surface Plasmon Resonances on Aberrant Gold Nanostructures , 2016 .

[45]  D. DeJarnette,et al.  Coupled dipole plasmonics of nanoantennas in discontinuous, complex dielectric environments , 2015 .

[46]  D. Roper,et al.  Spectral Characteristics of Noble Metal Nanoparticle–Molybdenum Disulfide Heterostructures , 2016 .

[47]  Harald Ditlbacher,et al.  Electron-energy-loss spectra of plasmonic nanoparticles. , 2009, Physical review letters.

[48]  Drew DeJarnette,et al.  Selective spectral filtration with nanoparticles for concentrating solar collectors , 2015 .

[49]  J. Hafner,et al.  Tunable Plasmonic Nanoprobes for Theranostics of Prostate Cancer , 2011, Theranostics.

[50]  X. Duan,et al.  Plasmon resonance enhanced multicolour photodetection by graphene. , 2011, Nature communications.

[51]  George C. Schatz,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[52]  A. Agarwal,et al.  Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods , 2009 .

[53]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[54]  Robert A. Taylor,et al.  Feasibility of nanofluid-based optical filters. , 2013, Applied optics.