Stochastic representations of model uncertainties at ECMWF: state of the art and future vision

Members in ensemble forecasts differ due to the representations of initial uncertainties and model uncertainties. The inclusion of stochastic schemes to represent model uncertainties has improved the probabilistic skill of the ECMWF ensemble by increasing reliability and reducing the error of the ensemble mean. Recent progress, challenges and future directions regarding stochastic representations of model uncertainties at ECMWF are described in this paper. The coming years are likely to see a further increase in the use of ensemble methods in forecasts and assimilation. This will put increasing demands on the methods used to perturb the forecast model. An area that is receiving a greater attention than 5 to 10 years ago is the physical consistency of the perturbations. Other areas where future efforts will be directed are the expansion of uncertainty representations to the dynamical core and to other components of the Earth system as well as the overall computational efficiency of representing model uncertainty.

[1]  Piotr K. Smolarkiewicz,et al.  CRCP: a cloud resolving convection parameterization for modeling the tropical convecting atmosphere , 1999 .

[2]  Franco Molteni,et al.  Simulation of the Madden– Julian Oscillation and its teleconnections in the ECMWF forecast system , 2010 .

[3]  Chris Snyder,et al.  Increasing the Skill of Probabilistic Forecasts: Understanding Performance Improvements from Model-Error Representations , 2015 .

[4]  Carolyn A. Reynolds,et al.  Examination of parameter variations in the U. S. Navy Global Ensemble , 2011 .

[5]  Jeffrey L. Anderson,et al.  Representing forecast error in a convection-permitting ensemble system , 2014 .

[6]  David S. Richardson,et al.  Effects of observation errors on the statistics for ensemble spread and reliability , 2004 .

[7]  Bruce Ingleby,et al.  759 New Developments in the Diagnosis and Verification of High-Impact Weather Forecasts , 2015 .

[8]  Terry L. Clark,et al.  Numerical simulations with a three-dimensional cloud model: Lateral boundary condition experiments and multicellular severe storm simulations , 1979 .

[9]  Antje Weisheimer,et al.  Impact of stochastic physics on tropical precipitation in the coupled ECMWF model , 2017 .

[10]  J. Mahfouf,et al.  The ecmwf operational implementation of four‐dimensional variational assimilation. III: Experimental results and diagnostics with operational configuration , 2000 .

[11]  Martin Köhler,et al.  Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time‐scales , 2008 .

[12]  William Kleiber,et al.  High resolution simulation of nonstationary Gaussian random fields , 2016, Comput. Stat. Data Anal..

[13]  Hannah M. Christensen,et al.  Climate SPHINX: evaluating the impact of resolution and stochastic physics parameterisations in the EC-Earth global climate model , 2017 .

[14]  H. Jonker,et al.  Turbulent Winds and Temperature Fronts in Large-Eddy Simulations of the Stable Atmospheric Boundary Layer , 2016 .

[15]  M. Wheeler,et al.  An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction , 2004 .

[16]  Nils Wedi,et al.  How does subgrid‐scale parametrization influence nonlinear spectral energy fluxes in global NWP models? , 2016 .

[17]  T. Gneiting Nonseparable, Stationary Covariance Functions for Space–Time Data , 2002 .

[18]  Michael Tsyrulnikov,et al.  A limited-area spatio-temporal stochastic pattern generator for simulation of uncertainties in ensemble applications , 2017 .

[19]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .

[20]  Mats Hamrud,et al.  A new grid for the IFS , 2016 .

[21]  G. J. Shutts,et al.  A stochastic convective backscatter scheme for use in ensemble prediction systems , 2015 .

[22]  Stephen D. Eckermann,et al.  Explicitly Stochastic Parameterization of Nonorographic Gravity Wave Drag , 2011 .

[23]  T. Iversen,et al.  Evaluation of ‘GLAMEPS’—a proposed multimodel EPS for short range forecasting , 2011 .

[24]  C. Kühnlein,et al.  The modelling infrastructure of the Integrated Forecasting System : Recent advances and future challenges , 2015 .

[25]  D. Wilks Effects of stochastic parametrizations in the Lorenz '96 system , 2005 .

[26]  Florian Pappenberger,et al.  Improving weather predictability by including land-surface model parameter uncertainty , 2016 .

[27]  Neill E. Bowler,et al.  The MOGREPS short‐range ensemble prediction system , 2008 .

[28]  George Mozdzynski,et al.  A Reduced Radiation Grid for the ECMWF Integrated Forecasting System , 2008 .

[29]  R. Plant,et al.  A Stochastic Parameterization for Deep Convection Based on Equilibrium Statistics , 2008 .

[30]  P. Smolarkiewicz,et al.  A class of semi-Lagrangian approximations for fluids. , 1992 .

[31]  P. Courtier,et al.  Correlation modelling on the sphere using a generalized diffusion equation , 2001 .

[32]  Angela Benedetti,et al.  The CAMS interim Reanalysis of Carbon Monoxide, Ozone and Aerosol for 2003–2015 , 2016 .

[33]  Dale R. Durran,et al.  Atmospheric Predictability: Why Butterflies Are Not of Practical Importance , 2014 .

[34]  T. N. Palmer,et al.  Oceanic Stochastic Parameterizations in a Seasonal Forecast System , 2015, 1506.09181.

[35]  G. Shutts A kinetic energy backscatter algorithm for use in ensemble prediction systems , 2005 .

[36]  D. Randall,et al.  Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities , 2003 .

[37]  Ricardo Todling A Complementary Note to 'A Lag-1 Smoother Approach to System-Error Estimation': The Intrinsic Limitations of Residual Diagnostics , 2015 .

[38]  Peter T. May,et al.  Relationships between the large‐scale atmosphere and the small‐scale convective state for Darwin, Australia , 2013 .

[39]  E. Lorenz The predictability of a flow which possesses many scales of motion , 1969 .

[40]  Paul Charbonneau,et al.  The Monge-Ampère trajectory correction for semi-Lagrangian schemes , 2014, J. Comput. Phys..

[41]  Daniel Hodyss,et al.  Inducing Tropical Cyclones to Undergo Brownian Motion: A Comparison between Itô and Stratonovich in a Numerical Weather Prediction Model , 2014 .

[42]  C. Piccolo,et al.  Ensemble Data Assimilation Using a Unified Representation of Model Error , 2016 .

[43]  Y. Trémolet Model‐error estimation in 4D‐Var , 2007 .

[44]  J. Houghton,et al.  Climate Change 2013 - The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , 2014 .

[45]  Massimo Bonavita,et al.  780 Ensemble of Data Assimilations applied to the CAMS ’ greenhouse gases analysis , 2016 .

[46]  Dirk P. Kroese,et al.  Spatial Process Generation , 2013, 1308.0399.

[47]  Piotr K. Smolarkiewicz,et al.  Anelastic and Compressible Simulation of Moist Dynamics at Planetary Scales , 2015 .

[48]  Darryl D. Holm Variational principles for stochastic fluid dynamics , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[49]  Martin Leutbecher,et al.  784 Towards process-level representation of model uncertainties : Stochastically perturbed parametrisations in the ECMWF ensemble , 2016 .

[50]  T. Gneiting 719 Calibration of Medium-Range Weather Forecasts , 2014 .

[51]  Sarah-Jane Lock,et al.  Towards process‐level representation of model uncertainties: stochastically perturbed parametrizations in the ECMWF ensemble , 2017 .

[52]  Antje Weisheimer,et al.  Assessment of representations of model uncertainty in monthly and seasonal forecast ensembles , 2011 .

[53]  Thomas Jung,et al.  Potential sea ice predictability and the role of stochastic sea ice strength perturbations , 2014 .

[54]  Roberto Buizza,et al.  Representing model error in ensemble data assimilation , 2014 .

[55]  Antje Weisheimer,et al.  Addressing model error through atmospheric stochastic physical parametrizations: impact on the coupled ECMWF seasonal forecasting system , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[56]  Neill E. Bowler,et al.  On the diagnosis of model error statistics using weak‐constraint data assimilation , 2017 .

[57]  Z. B. Bouallègue,et al.  Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries , 2011 .

[58]  F. Wetterhall,et al.  729 Representing the Earth surfaces in the Integrated Forecasting System : Recent advances and future challenges , 2014 .

[59]  Alain Joly,et al.  PEARP, the Météo‐France short‐range ensemble prediction system , 2015 .

[60]  Martin Schlather,et al.  Construction of Covariance Functions and Unconditional Simulation of Random Fields , 2012 .

[61]  Ricardo Todling,et al.  A lag‐1 smoother approach to system‐error estimation: sequential method , 2015 .

[62]  Mark J. Rodwell,et al.  Reliability in ensemble data assimilation , 2016 .

[63]  Hannah M. Christensen,et al.  Does the ECMWF IFS convection parameterization with stochastic physics correctly reproduce relationships between convection and the large-scale state? , 2015 .

[64]  Warren Tennant,et al.  Using a Stochastic Kinetic Energy Backscatter Scheme to Improve MOGREPS Probabilistic Forecast Skill , 2011 .

[65]  G. D. Nastrom,et al.  A Climatology of Atmospheric Wavenumber Spectra of Wind and Temperature Observed by Commercial Aircraft , 1985 .

[66]  Mats Hamrud,et al.  An all-scale, finite-volume module for the IFS , 2016 .

[67]  Hannah M. Christensen,et al.  Climate SPHINX: Evaluating the impact of resolution and stochastic physics parameterisations in climate simulations , 2016 .

[68]  Tim N. Palmer,et al.  Stochastic Subgrid-Scale Ocean Mixing: Impacts on Low-Frequency Variability , 2017 .

[69]  G. Shutts,et al.  Assessing parametrization uncertainty associated with horizontal resolution in numerical weather prediction models , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[70]  Laure Raynaud,et al.  Impact of Stochastic Physics in a Convection-Permitting Ensemble , 2012 .

[71]  J. G.,et al.  Convective Forcing Fluctuations in a Cloud-Resolving Model : Relevance to the Stochastic Parameterization Problem , 2007 .

[72]  Chris Snyder,et al.  Model Uncertainty in a Mesoscale Ensemble Prediction System: Stochastic versus Multiphysics Representations , 2011 .

[73]  G. J. Shutts,et al.  Convective Forcing Fluctuations in a Cloud-Resolving Model: Relevance to the Stochastic Parameterization Problem , 2007 .

[74]  W. Stahel,et al.  Stochastic partial differential equation based modelling of large space–time data sets , 2012, 1204.6118.

[75]  Renate Hagedorn,et al.  Representing model uncertainty in weather and climate prediction , 2005 .

[76]  Akio Arakawa,et al.  CLOUDS AND CLIMATE: A PROBLEM THAT REFUSES TO DIE. Clouds of many , 2022 .

[77]  Martin Leutbecher,et al.  On the reliability of ensemble variance in subspaces defined by singular vectors , 2014 .

[78]  Mark J. Rodwell,et al.  Observation‐based evaluation of ensemble reliability , 2016 .

[79]  John Robinson,et al.  Ten years of atmospheric methane from ground-based NDACC FTIR observations , 2016 .

[80]  Gérald Desroziers,et al.  Accounting for model error in the Météo‐France ensemble data assimilation system , 2012 .

[81]  D. Klocke,et al.  Tuning the climate of a global model , 2012 .

[82]  Irene M. Moroz,et al.  Introducing independent patterns into the Stochastically Perturbed Parametrization Tendencies (SPPT) scheme , 2017 .

[83]  Martin Leutbecher,et al.  A Spectral Stochastic Kinetic Energy Backscatter Scheme and Its Impact on Flow-Dependent Predictability in the ECMWF Ensemble Prediction System , 2009 .

[84]  G. Craig,et al.  Upscale Error Growth in a High-Resolution Simulation of a Summertime Weather Event over Europe* , 2015 .

[85]  E. Lorenz,et al.  The predictability of a flow which possesses many scales of motion , 1969 .

[86]  Peter Bauer,et al.  The quiet revolution of numerical weather prediction , 2015, Nature.

[87]  Guillem Candille,et al.  A generic approach to explicit simulation of uncertainty in the NEMO ocean model , 2015 .

[88]  Tim Palmer,et al.  Climate forecasting: Build high-resolution global climate models , 2014, Nature.

[89]  J. Morcrette,et al.  Impact of a New Radiation Package, McRad, in the ECMWF Integrated Forecasting System , 2008 .

[90]  Pierre Augier,et al.  A New Formulation of the Spectral Energy Budget of the Atmosphere, with Application to Two High-Resolution General Circulation Models , 2013 .

[91]  Paul D. Williams,et al.  Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies , 2016 .

[92]  Alison C. Rudd,et al.  Representation of model error in a convective-scale ensemble prediction system , 2014 .

[93]  Michail Diamantakis,et al.  Sensitivity of the ECMWF Model to Semi-Lagrangian Departure Point Iterations , 2016 .

[94]  P. L. Houtekamer,et al.  Toward Random Sampling of Model Error in the Canadian Ensemble Prediction System , 2010 .

[95]  M. Fisher,et al.  Background Error Covariance Modelling , 2003 .

[96]  Tim Palmer Towards the probabilistic Earth‐system simulator: a vision for the future of climate and weather prediction , 2012 .

[97]  George C. Craig,et al.  Simulation of upscale error growth with a stochastic convection scheme , 2015 .

[98]  John M. Lewis,et al.  Roots of Ensemble Forecasting , 2005 .

[99]  P. Bechtold,et al.  Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? , 2013 .

[100]  Matthew D. Collins,et al.  Improved stochastic physics schemes for global weather and climate models , 2016 .

[101]  Mats Hamrud,et al.  Accelerating Extreme-Scale Numerical Weather Prediction , 2015, PPAM.

[102]  François Lott,et al.  A stochastic parameterization of non‐orographic gravity waves: Formalism and impact on the equatorial stratosphere , 2012 .

[103]  T. Palmer,et al.  Stochastic representation of model uncertainties in the ECMWF ensemble prediction system , 2007 .

[104]  Thomas Haiden,et al.  The skill of ECMWF cloudiness forecasts , 2016 .

[105]  British Columbia,et al.  Stochastic Behavior of Tropical Convection in Observations and a Multicloud Model , 2013 .

[106]  Robin J. Hogan,et al.  Mitigating errors in surface temperature forecasts using approximate radiation updates , 2015 .

[107]  Neill E. Bowler,et al.  The Benefits of Multianalysis and Poor Man’s Ensembles , 2008 .

[108]  A. Simmons,et al.  The ECMWF operational implementation of four‐dimensional variational assimilation. I: Experimental results with simplified physics , 2007 .

[109]  Massimo Bonavita,et al.  The evolution of the ECMWF hybrid data assimilation system , 2016 .

[110]  T. Gneiting,et al.  Uncertainty Quantification in Complex Simulation Models Using Ensemble Copula Coupling , 2013, 1302.7149.

[111]  Steven J. Woolnough,et al.  Atmosphere‐ocean coupled processes in the Madden‐Julian oscillation , 2015 .

[112]  Richard Swinbank,et al.  Representing model uncertainty in the Met Office convection‐permitting ensemble prediction system and its impact on fog forecasting , 2016 .

[113]  H. Arnold,et al.  Stochastic parametrisation and model uncertainty , 2013 .

[114]  T. Palmer,et al.  Stochastic parametrization and model uncertainty , 2009 .

[115]  G. Craig,et al.  Physically Based Stochastic Perturbations (PSP) in the Boundary Layer to Represent Uncertainty in Convective Initiation , 2016 .

[116]  Massimo Bonavita,et al.  On the impact of re‐centring initial conditions for ensemble forecasts , 2015 .

[117]  R. Buizza,et al.  The forecast skill horizon , 2015 .

[118]  Mats Hamrud,et al.  A finite-volume module for simulating global all-scale atmospheric flows , 2016, J. Comput. Phys..

[119]  Lars Isaksen,et al.  Potential use of an ensemble of analyses in the ECMWF Ensemble Prediction System , 2008 .

[120]  Harald Flentje,et al.  Coupling global chemistry transport models to ECMWF’s integrated forecast system , 2009 .

[121]  Peter M. Inness,et al.  Simulation of the Madden–Julian Oscillation in a Coupled General Circulation Model. Part I: Comparison with Observations and an Atmosphere-Only GCM , 2003 .

[122]  Representing model uncertainty: stochastic parametrizations at ECMWF , 2017 .

[123]  Peter D. Düben,et al.  Single Precision in Weather Forecasting Models: An Evaluation with the IFS , 2017 .

[124]  Florian Pappenberger,et al.  Improved seasonal prediction of the hot summer of 2003 over Europe through better representation of uncertainty in the land surface , 2016 .

[125]  G. J. Shutts,et al.  Coarse Graining the Vorticity Equation in the ECMWF Integrated Forecasting System: The Search for Kinetic Energy Backscatter , 2013 .

[126]  J. Derber,et al.  A reformulation of the background error covariance in the ECMWF global data assimilation system , 1999 .

[127]  T. Palmer A nonlinear dynamical perspective on model error: A proposal for non‐local stochastic‐dynamic parametrization in weather and climate prediction models , 2001 .