Using the PLUM procedure of SPSS to fit unequal variance and generalized signal detection models

The recent addition of a procedure in SPSS for the analysis of ordinal regression models offers a simple means for researchers to fit the unequal variance normal signal detection model and other extended signal detection models. The present article shows how to implement the analysis and how to interpret the SPSS output. Examples of fitting the unequal variance normal model and other generalized signal detection models are given. The approach offers a convenient means for applying signal detection theory to a variety of research.

[1]  Tx Station Stata Statistical Software: Release 7. , 2001 .

[2]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[3]  D. Cox,et al.  Analysis of Binary Data (2nd ed.). , 1990 .

[4]  L. T. DeCarlo Signal detection theory with finite mixture distributions: theoretical developments with applications to recognition memory. , 2002, Psychological review.

[5]  George A. Gescheider,et al.  Psychophysics: The Fundamentals , 1997 .

[6]  J SWETS,et al.  Decision processes in perception. , 1961, Psychological review.

[7]  L. T. DeCarlo On the meaning and use of kurtosis. , 1997 .

[8]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[9]  David R. Anderson,et al.  Model Selection and Inference: A Practical Information-Theoretic Approach , 2001 .

[10]  David R. Cox The analysis of binary data , 1970 .

[11]  D. S. Sivia,et al.  Data Analysis , 1996, Encyclopedia of Evolutionary Psychological Science.

[12]  G. Maddala Limited-dependent and qualitative variables in econometrics: Introduction , 1983 .

[13]  Neil A. Macmillan,et al.  Detection Theory: A User's Guide , 1991 .

[14]  T. Marill Detection theory and psychophysics , 1956 .

[15]  D. McFadden Conditional logit analysis of qualitative choice behavior , 1972 .

[16]  Lawrence T. DeCarlo,et al.  Signal detection theory and generalized linear models , 1998 .

[17]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[18]  D. Dorfman,et al.  Maximum-likelihood estimation of parameters of signal-detection theory and determination of confidence intervals—Rating-method data , 1969 .

[19]  Eric R. Ziegel,et al.  Analysis of Binary Data (2nd ed.) , 1991 .

[20]  M Glanzer,et al.  The mirror effect in recognition memory , 1984, Memory & cognition.

[21]  C B Begg,et al.  A General Regression Methodology for ROC Curve Estimation , 1988, Medical decision making : an international journal of the Society for Medical Decision Making.

[22]  P. McCullagh,et al.  Generalized Linear Models, 2nd Edn. , 1990 .

[23]  N. Nagelkerke,et al.  A note on a general definition of the coefficient of determination , 1991 .

[24]  P. Schmidt,et al.  Limited-Dependent and Qualitative Variables in Econometrics. , 1984 .

[25]  S. Menard Coefficients of Determination for Multiple Logistic Regression Analysis , 2000 .

[26]  C F Sheu,et al.  A nonlinear regression approach to estimating signal detection models for rating data , 2001, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[27]  C. Dayton Latent Class Scaling Analysis , 1999 .

[28]  John A. Swets,et al.  Signal Detection Theory and ROC Analysis in Psychology and Diagnostics: Collected Papers , 1996 .

[29]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[30]  G. Gescheider Psychophysics: The Fundamentals , 1997 .

[31]  J. H. Schuenemeyer,et al.  Generalized Linear Models (2nd ed.) , 1992 .