Multiple-bases belief-propagation decoding of high-density cyclic codes

We introduce a new method for decoding short and moderate-length linear block codes with dense parity check matrix representations of cyclic form. This approach is termed multiple-bases belief-propagation. The proposed iterative scheme makes use of the fact that a code has many structurally diverse parity-check matrices, capable of detecting different error patterns. We show that this inherent code property leads to decoding algorithms with significantly better performance when compared to standard belief-propagation decoding. Furthermore, we describe how to choose sets of parity-check matrices of cyclic form amenable for multiple-bases decoding, based on analytical studies performed for the binary erasure channel. For several cyclic and extended cyclic codes, the multiple-bases belief propagation decoding performance can be shown to closely follow that of the maximum-likelihood decoder.

[1]  O. Milenkovic,et al.  Algorithmic and combinatorial analysis of trapping sets in structured LDPC codes , 2005, 2005 International Conference on Wireless Networks, Communications and Mobile Computing.

[2]  P. Vontobel,et al.  Graph-covers and iterative decoding of nite length codes , 2003 .

[3]  Jon Feldman,et al.  Decoding error-correcting codes via linear programming , 2003 .

[4]  J. Huber,et al.  Multiple-Bases Belief-Propagation with Leaking for Decoding of Moderate-Length Block Codes , 2011 .

[5]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[6]  Khaled A. S. Abdel-Ghaffar,et al.  Complete Enumeration of Stopping Sets of Full-Rank Parity-Check Matrices of Hamming Codes , 2007, IEEE Transactions on Information Theory.

[7]  C. Hartmann,et al.  Efficient Maximum-Likelihood Soft-Decision Decoding of Linear Block Codes Using Algorithm A* , 1993, Proceedings. IEEE International Symposium on Information Theory.

[8]  Johannes B. Huber,et al.  CTH02-4: When Does One Redundant Parity-Check Equation Matter? , 2006, IEEE Globecom 2006.

[9]  Evangelos Eleftheriou,et al.  Regular and irregular progressive edge-growth tanner graphs , 2005, IEEE Transactions on Information Theory.

[10]  C. P. Huber,et al.  Precise structural information for transient enzyme-substrate complexes by a combined X-ray crystallographic-resonance Raman spectroscopic approach. , 1982, Biochemistry.

[11]  Shu Lin,et al.  Chase-type and GMD coset decodings , 2000, IEEE Trans. Commun..

[12]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[13]  Keith M. Chugg,et al.  Random Redundant Soft-In Soft-Out Decoding of Linear Block Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[14]  Evangelos Eleftheriou,et al.  On the computation of the minimum distance of low-density parity-check codes , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[15]  Alex J. Grant,et al.  Which Codes Have$4$-Cycle-Free Tanner Graphs? , 2006, IEEE Transactions on Information Theory.

[16]  Johannes B. Huber,et al.  Multiple-Bases Belief-Propagation for Decoding of Short Block Codes , 2007, 2007 IEEE International Symposium on Information Theory.

[17]  Andrew McGregor,et al.  On the Hardness of Approximating Stopping and Trapping Sets in LDPC Codes , 2007, 2007 IEEE Information Theory Workshop.

[18]  J. Kovacevic,et al.  Life Beyond Bases: The Advent of Frames (Part II) , 2007, IEEE Signal Processing Magazine.

[19]  J. Kovacevic,et al.  Life Beyond Bases: The Advent of Frames (Part I) , 2007, IEEE Signal Processing Magazine.

[20]  Paul H. Siegel,et al.  Improved Upper Bounds on Stopping Redundancy , 2005, IEEE Transactions on Information Theory.

[21]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[22]  Khaled A. S. Abdel-Ghaffar,et al.  Construction of LDPC codes for AWGN and binary erasure channels based on finite fields , 2005, IEEE Information Theory Workshop, 2005..

[23]  Krishna R. Narayanan,et al.  Iterative Soft-Input Soft-Output Decoding of Reed-Solomon Codes by Adapting the , 2005 .

[24]  Fabrizio Pollara,et al.  LDPC decoding using multiple representations , 2002, Proceedings IEEE International Symposium on Information Theory,.

[25]  Martin Bossert,et al.  On Iterative Soft-Decision Decoding of Linear Binary Block Codes and Product Codes , 1998, IEEE J. Sel. Areas Commun..

[26]  Shu Lin,et al.  Soft-decision decoding of linear block codes based on ordered statistics , 1994, IEEE Trans. Inf. Theory.

[27]  Marc P. C. Fossorier,et al.  Iterative reliability-based decoding of linear block codes with adaptive belief propagation , 2005, IEEE Communications Letters.

[28]  Henk D. L. Hollmann,et al.  On Parity-Check Collections for Iterative Erasure Decoding That Correct all Correctable Erasure Patterns of a Given Size , 2007, IEEE Transactions on Information Theory.

[29]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[30]  Deepak Sridhara,et al.  Pseudocodewords of Tanner Graphs , 2005, IEEE Transactions on Information Theory.

[31]  Johannes B. Huber,et al.  Permutation Decoding and the Stopping Redundancy Hierarchy of Cyclic and Extended Cyclic Codes , 2008, IEEE Transactions on Information Theory.

[32]  Shu Lin,et al.  Error Control Coding , 2004 .

[33]  Krishna R. Narayanan,et al.  Iterative Soft-Input Soft-Output Decoding of Reed–Solomon Codes by Adapting the Parity-Check Matrix , 2005, IEEE Transactions on Information Theory.

[34]  Johannes B. Huber,et al.  LDPC codes and convolutional codes with equal structural delay: a comparison , 2009, IEEE Transactions on Communications.

[35]  J. Huber,et al.  The stopping redundancy hierarchy of cyclic codes , 2006 .

[36]  Johannes B. Huber,et al.  Information Combining , 2006, Found. Trends Commun. Inf. Theory.

[37]  Alexander Vardy,et al.  On the stopping distance and the stopping redundancy of codes , 2006, IEEE Transactions on Information Theory.