Metasurface transformation for surface wave control

Metasurfaces (MTSs) constitute a class of thin metamaterials used for controlling plane waves and surface waves (SWs). At microwave frequencies, they are constituted by a metallic texture with elements of sub-wavelength size printed on thin grounded dielectric substrates. These structures support the propagation of SWs. By averaging the tangential fields, the MTSs can be characterized through homogenized isotropic or anisotropic boundary conditions, which can be described through a homogeneous equivalent impedance. This impedance can be spatially modulated by locally changing the size/orientation of the texture elements. This allows for a deformation of the SW wavefront which addresses the local wavevector along not-rectilinear paths. The effect of the MTS modulation can be analysed in the framework of transformation optics. This article reviews theory and implementation of this MTS transformation and shows some examples at microwave frequencies.

[1]  D. Werner,et al.  Transformation Electromagnetics: An Overview of the Theory and Applications , 2010, IEEE Antennas and Propagation Magazine.

[2]  Yang Hao,et al.  An accurate control of the surface wave using transformation optics. , 2012, Optics express.

[3]  D. Janzing,et al.  A single-shot measurement of the energy of product states in a translation invariant spin chain can replace any quantum computation , 2007, 0710.1615.

[4]  Y. Hao,et al.  Discrete Coordinate Transformation for Designing All-Dielectric Flat Antennas , 2010, IEEE Transactions on Antennas and Propagation.

[5]  David R. Smith,et al.  An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials , 2012, IEEE Antennas and Propagation Magazine.

[6]  D. González-Ovejero,et al.  Modulated Metasurface Antennas for Space: Synthesis, Analysis and Realizations , 2015, IEEE Transactions on Antennas and Propagation.

[7]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[8]  A. Cangellaris,et al.  Accurate approximation of Green's functions in planar stratified media in terms of a finite sum of spherical and cylindrical waves , 2006, IEEE Transactions on Antennas and Propagation.

[9]  G. Minatti,et al.  A Circularly-Polarized Isoflux Antenna Based on Anisotropic Metasurface , 2012, IEEE Transactions on Antennas and Propagation.

[10]  F. Caminita,et al.  Spiral Leaky-Wave Antennas Based on Modulated Surface Impedance , 2011, IEEE Transactions on Antennas and Propagation.

[11]  Stefano Maci,et al.  Metasurface transformation optics , 2014 .

[12]  Stefano Maci,et al.  Metasurfing by Transformation Electromagnetics , 2014, IEEE Antennas and Wireless Propagation Letters.

[13]  C. Holloway,et al.  A discussion on the interpretation and characterization of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials , 2009 .

[14]  Amit M. Patel,et al.  Effective Surface Impedance of a Printed-Circuit Tensor Impedance Surface (PCTIS) , 2013, IEEE Transactions on Microwave Theory and Techniques.

[15]  Stefano Maci,et al.  Surface Waves Supported by Metasurfaces With Self-Complementary Geometries , 2015, IEEE Transactions on Antennas and Propagation.

[16]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[17]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[18]  Ryan Quarfoth,et al.  Surface Wave Scattering Reduction Using Beam Shifters , 2014, IEEE Antennas and Wireless Propagation Letters.

[19]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[20]  D. Hoppe Impedance Boundary Conditions In Electromagnetics , 1995 .

[21]  Federico Capasso,et al.  Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[22]  C. Pfeiffer,et al.  A Printed, Broadband Luneburg Lens Antenna , 2010, IEEE Transactions on Antennas and Propagation.

[23]  M. Caiazzo,et al.  A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab , 2005, IEEE Transactions on Antennas and Propagation.

[24]  Stefano Maci,et al.  Surface Wave Dispersion for Anisotropic Metasurfaces Constituted by Elliptical Patches , 2015, IEEE Transactions on Antennas and Propagation.

[25]  D. Sievenpiper,et al.  Scalar and Tensor Holographic Artificial Impedance Surfaces , 2010, IEEE Transactions on Antennas and Propagation.

[26]  A. Semlyen,et al.  Rational approximation of frequency domain responses by vector fitting , 1999 .

[27]  Amit M. Patel,et al.  A Printed Leaky-Wave Antenna Based on a Sinusoidally-Modulated Reactance Surface , 2011, IEEE Transactions on Antennas and Propagation.

[28]  Amit M. Patel,et al.  Transformation Electromagnetics Devices Based on Printed-Circuit Tensor Impedance Surfaces , 2014, IEEE Transactions on Microwave Theory and Techniques.

[29]  Stefano Maci,et al.  Metasurface Transformation Theory , 2014 .

[30]  A. Grbic,et al.  Modeling and Analysis of Printed-Circuit Tensor Impedance Surfaces , 2013, IEEE Transactions on Antennas and Propagation.

[31]  S. Maci,et al.  Alternative derivation of electromagnetic cloaks and concentrators , 2007, 0710.2933.

[32]  F. Bilotti,et al.  A new accurate model of high-impedance surfaces consisting of circular patches , 2011 .

[33]  F. Caminita,et al.  Non-Uniform Metasurface Luneburg Lens Antenna Design , 2012, IEEE Transactions on Antennas and Propagation.