Optimization of Parametrized Divergences in Fuzzy c-Means

We propose the utilization of divergences as dissimilarity mea- sure in the Fuzzy c-Means algorithm for the clustering of functional data. Further we adapt the relevance parameter to improve the data representa- tion and therefore obtain more accurate clusterings in terms of separation and compactness. We show for two example applications that this method leads to improved performance.

[1]  J. Bezdek Cluster Validity with Fuzzy Sets , 1973 .

[2]  José Carlos Príncipe,et al.  Spike Sorting Using non Parametric Clustering VIA Cauchy Schwartz PDF Divergence , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[3]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[4]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Thomas Villmann,et al.  Generalized relevance learning vector quantization , 2002, Neural Networks.

[6]  José Carlos Príncipe,et al.  Information Theoretic Clustering , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  David A. Landgrebe,et al.  Signal Theory Methods in Multispectral Remote Sensing , 2003 .

[8]  Barbara Hammer,et al.  Local matrix learning in clustering and applications for manifold visualization , 2010, Neural Networks.

[9]  Sadaaki Miyamoto,et al.  Fuzzy c-Means Algorithms Using Kullback-Leibler Divergence and Helliger Distance Based on Multinomial Manifold , 2008, J. Adv. Comput. Intell. Intell. Informatics.

[10]  Alexander Elgart,et al.  The Adiabatic Theorem of Quantum Mechanics , 1998 .

[11]  Deniz Erdoğmuş,et al.  Clustering using Renyi's entropy , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..

[12]  Y. Fukuyama,et al.  A new method of choosing the number of clusters for the fuzzy c-mean method , 1989 .

[13]  J. Bezdek Numerical taxonomy with fuzzy sets , 1974 .

[14]  Thomas Villmann,et al.  Divergence-Based Vector Quantization , 2011, Neural Computation.