Optimization of Parametrized Divergences in Fuzzy c-Means
暂无分享,去创建一个
[1] J. Bezdek. Cluster Validity with Fuzzy Sets , 1973 .
[2] José Carlos Príncipe,et al. Spike Sorting Using non Parametric Clustering VIA Cauchy Schwartz PDF Divergence , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.
[3] James C. Bezdek,et al. Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.
[4] Gerardo Beni,et al. A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..
[5] Thomas Villmann,et al. Generalized relevance learning vector quantization , 2002, Neural Networks.
[6] José Carlos Príncipe,et al. Information Theoretic Clustering , 2002, IEEE Trans. Pattern Anal. Mach. Intell..
[7] David A. Landgrebe,et al. Signal Theory Methods in Multispectral Remote Sensing , 2003 .
[8] Barbara Hammer,et al. Local matrix learning in clustering and applications for manifold visualization , 2010, Neural Networks.
[9] Sadaaki Miyamoto,et al. Fuzzy c-Means Algorithms Using Kullback-Leibler Divergence and Helliger Distance Based on Multinomial Manifold , 2008, J. Adv. Comput. Intell. Intell. Informatics.
[10] Alexander Elgart,et al. The Adiabatic Theorem of Quantum Mechanics , 1998 .
[11] Deniz Erdoğmuş,et al. Clustering using Renyi's entropy , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..
[12] Y. Fukuyama,et al. A new method of choosing the number of clusters for the fuzzy c-mean method , 1989 .
[13] J. Bezdek. Numerical taxonomy with fuzzy sets , 1974 .
[14] Thomas Villmann,et al. Divergence-Based Vector Quantization , 2011, Neural Computation.