Alloy design and properties optimization of multi-component alloy based on solidification characteristics

[1]  B. Liu,et al.  High-throughput simulation combined machine learning search for optimum elemental composition in medium entropy alloy , 2021 .

[2]  Yong Liu,et al.  Modelling and prediction of hardness in multi-component alloys: A combined machine learning, first principles and experimental study , 2021 .

[3]  Ling Qiao,et al.  Modelling and prediction of thermal deformation behaviors in a pearlitic steel , 2020 .

[4]  Ling Qiao,et al.  Application of improved GRNN model to predict interlamellar spacing and mechanical properties of hypereutectoid steel , 2020 .

[5]  Yong Liu,et al.  Application of generalized regression neural network optimized by fruit fly optimization algorithm for fracture toughness in a pearlitic steel , 2020 .

[6]  Jianzhong Jiang,et al.  Improvement of corrosion resistance and magnetic properties of FeCoNiAl0.2Si0.2 high entropy alloy via rapid-solidification , 2020 .

[7]  C. Tasan,et al.  High entropy alloys: A focused review of mechanical properties and deformation mechanisms , 2020, Acta Materialia.

[8]  S. Shi,et al.  Corrosion resistant nanostructured eutectic high entropy alloy , 2020 .

[9]  D. Xue,et al.  Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models , 2020 .

[10]  W. Gan,et al.  Work hardening and softening behavior of pure Mg influenced by Zn addition investigated via in-situ neutron diffraction , 2020 .

[11]  Yunfei Xue,et al.  High strength and ductility AlCrFeNiV high entropy alloy with hierarchically heterogeneous microstructure prepared by selective laser melting , 2020 .

[12]  Zhiyong Wang,et al.  Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension: Micromechanism and constitutive modeling , 2020, International Journal of Plasticity.

[13]  Yao-Jen Chang,et al.  Prediction of the Composition and Hardness of High-Entropy Alloys by Machine Learning , 2019, JOM.

[14]  M. Göken,et al.  A review of experimental approaches to fracture toughness evaluation at the micro-scale , 2019, Materials & Design.

[15]  Turab Lookman,et al.  Machine learning assisted design of high entropy alloys with desired property , 2019, Acta Materialia.

[16]  H. Zhuang,et al.  Machine-learning phase prediction of high-entropy alloys , 2019, Acta Materialia.

[17]  Yong Zhang,et al.  Compositional Design of Soft Magnetic High Entropy Alloys by Minimizing Magnetostriction Coefficient in (Fe0.3Co0.5Ni0.2)100−x(Al1/3Si2/3)x System , 2019, Metals.

[18]  Yong Zhang,et al.  Microstructure and Corrosion Behavior of (CoCrFeNi)95Nb5 High-Entropy Alloy Coating Fabricated by Plasma Spraying , 2019, Materials.

[19]  R. Sandström,et al.  Corrigendum: Nonlinear Oxidation Behavior in Pure Ni and Ni-Containing Entropic Alloys , 2018, Frontiers in Materials.

[20]  Daniel B. Miracle,et al.  Development and exploration of refractory high entropy alloys—A review , 2018, Journal of Materials Research.

[21]  Ya Liu,et al.  Microstructure and microhardness of as-cast and 800 °C annealed Al x Cr 0.2 Fe 0.2 Ni 0.6-x and Al 0.2 Cr 0.2 Fe y Ni 0.6-y alloys , 2018, Vacuum.

[22]  Peter K. Liaw,et al.  Science and technology in high-entropy alloys , 2018, Science China Materials.

[23]  Fang Liu,et al.  Lane-changes prediction based on adaptive fuzzy neural network , 2018, Expert Syst. Appl..

[24]  Ka Ram Lim,et al.  Dual-phase high-entropy alloys for high-temperature structural applications , 2017 .

[25]  J. Deng,et al.  A physical-based constitutive model to describe the strain-hardening and dynamic recovery behaviors of 5754 aluminum alloy , 2017 .

[26]  Tingju Li,et al.  Effects of Ta addition on the microstructures and mechanical properties of CoCrFeNi high entropy alloy , 2017 .

[27]  Xuefei Huang,et al.  Microstructure and Room-Temperature Mechanical Properties of FeCrMoVTix High-Entropy Alloys , 2017, Journal of Materials Engineering and Performance.

[28]  Jiqiu Qi,et al.  Effects of aluminum on microstructure and compressive properties of Al-Cr-Fe-Ni eutectic multi-component alloys , 2017 .

[29]  D. Miracle,et al.  A critical review of high entropy alloys and related concepts , 2016 .

[30]  M. Sebastiani,et al.  Determination of the elastic moduli and residual stresses of freestanding Au-TiW bilayer thin films by nanoindentation , 2016 .

[31]  Jian Lu,et al.  High-entropy alloy: challenges and prospects , 2016 .

[32]  C. Tasan,et al.  Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off , 2016, Nature.

[33]  Tongmin Wang,et al.  A multi-component AlCrFe2Ni2 alloy with excellent mechanical properties , 2016 .

[34]  Jianqing Zhao,et al.  High performance fire-retarded epoxy imparted by a novel phenophosphazine-containing antiflaming compound at ultra-low loading , 2016 .

[35]  Tongmin Wang,et al.  Mechanical Properties Improvement of AlCrFeNi2Ti0.5 High Entropy Alloy through Annealing Design and its Relationship with its Particle-reinforced Microstructures , 2015 .

[36]  Xinhua Wu,et al.  Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys , 2015 .

[37]  Nikita Stepanov,et al.  Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy , 2015 .

[38]  L. Hua,et al.  Study of Static Recrystallization Behaviors of GCr15 Steel Under Two-Pass Hot Compression Deformation , 2015, Journal of Materials Engineering and Performance.

[39]  Zhihua Wang,et al.  Superior high tensile elongation of a single-crystal CoCrFeNiAl0.3 high-entropy alloy by Bridgman solidification , 2014 .

[40]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[41]  Anil Kumar Singh,et al.  On the formation of disordered solid solutions in multi-component alloys , 2014, Journal of Alloys and Compounds.

[42]  Jien-Wei Yeh,et al.  Alloy Design Strategies and Future Trends in High-Entropy Alloys , 2013 .

[43]  P. Liaw,et al.  High-entropy Alloys with High Saturation Magnetization, Electrical Resistivity, and Malleability , 2013, Scientific Reports.

[44]  Oleg N. Senkov,et al.  Low-Density, Refractory Multi-Principal Element Alloys of the Cr-Nb-Ti-V-Zr System: Microstructure and Phase Analysis (Postprint) , 2013 .

[45]  X. Yang,et al.  Alloy Design and Properties Optimization of High-Entropy Alloys , 2012 .

[46]  Yong Zhang,et al.  Prediction of high-entropy stabilized solid-solution in multi-component alloys , 2012 .

[47]  J. Eckert,et al.  Role of crystalline precipitates on the mechanical properties of (Cu0.50Zr0.50)100-xAlx (x= 4, 5, 7) bulk metallic glasses , 2011 .

[48]  D. Miracle,et al.  Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys , 2011 .

[49]  Tongmin Wang,et al.  Effect of aluminium content of AlxCrFe1·5Ni0·5 multiprincipal alloys on microstructure and alloy hardness , 2011 .

[50]  Jing Shi,et al.  Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys , 2009 .

[51]  Ying Wang,et al.  Effects of Mn, Ti and V on the microstructure and properties of AlCrFeCoNiCu high entropy alloy , 2008 .

[52]  Yong Zhang,et al.  Microstructure characterizations and strengthening mechanism of multi-principal component AlCoCrFeNiTi0.5 solid solution alloy with excellent mechanical properties , 2008 .

[53]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[54]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..