Radiative heat transfer in fire safety science

In fire safety science literature thermal radiation is commonly acknowledged as the dominant mode of heat transfer for medium or large scale fires, which determines the growth and spread of a number of fires. This paper is an attempt to overview the contribution of radiative heat transfer research to fire safety science over the last decade, and to highlight the needs for further research.

[1]  B. Porterie,et al.  On the Prediction of Firebreak Efficiency , 2001 .

[2]  Jennifer X. Wen,et al.  Analysis of the two-flux model for predicting water spray transmittance in fire protection application , 2000 .

[3]  MODELING THERMAL IMPACT OF WILDLAND FIRES ON STRUCTURES IN THE URBAN INTERFACE. PART 2: RADIATIVE IMPACT OF A FIRE FRONT , 2005 .

[4]  H. Rushmeier,et al.  Simultaneous optical measurement of soot volume fraction, temperature, and CO2 in heptane pool fire , 1994 .

[5]  L. Kiss,et al.  COMPARATIVE PERFORMANCE OF NONGRAY GAS MODELING TECHNIQUES , 2002 .

[6]  Gerard M. Faeth,et al.  Refractive Indices at Visible Wavelengths of Soot Emitted From Buoyant Turbulent Diffusion Flames , 1997 .

[7]  A. Lacis,et al.  A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres , 1991 .

[8]  A procedure to determine the onset of soot agglomeration from multi-wavelength experiments , 1997 .

[9]  William L. Grosshandler,et al.  Radiative heat transfer in nonhomogeneous gases: A simplified approach , 1980 .

[10]  Air mixture radiative property modelling in the temperature range 10,000–40,000 K , 1996 .

[11]  F. Albini Wildland Fire Spread by Radiation-a Model Including Fuel Cooling by Natural Convection , 1986 .

[12]  A. Snegirev,et al.  Statistical modeling of thermal radiation transfer in buoyant turbulent diffusion flames , 2004 .

[13]  Michael F. Modest,et al.  The Full-Spectrum Correlated-k Distribution for Thermal Radiation From Molecular Gas-Particulate Mixtures , 2002 .

[14]  S. Dembélé,et al.  A method for modeling the mitigation of hazardous fire thermal radiation by water spray curtains , 1997 .

[15]  A. Soufiani,et al.  Accuracy of narrow-band and global models for radiative transfer in H2O, CO2, and H2OCO2 mixtures at high temperature , 1999 .

[16]  Ashok T. Modak,et al.  Thermal radiation from pool fires , 1977 .

[17]  J. Markham,et al.  Extension of emission-transmission technique to particulate samples using FT-IR , 1986 .

[18]  B. W. Webb,et al.  A Spectral Line-Based Weighted-Sum-of-Gray-Gases Model for Arbitrary RTE Solvers , 1993 .

[19]  Sønnik Clausen,et al.  Infrared low-resolution emission spectroscopy of hot gases , 1998, Defense, Security, and Sensing.

[20]  Ashok T. Modak,et al.  Radiation from products of combustion , 1979 .

[21]  T. S. Ravigururajan,et al.  A model for attenuation of fire radiation through water droplets , 1989 .

[22]  B. W. Webb,et al.  Development and application of an absorptionline blackbody distribution function for CO2 , 1995 .

[23]  Edwin R. Galea,et al.  The mathematical modelling and computer simulation of fire development in aircraft , 1991 .

[24]  O Rathmann,et al.  Measurement of surface temperature and emissivity by a multitemperature method for Fourier-transform infrared spectrometers. , 1996, Applied optics.

[25]  A. Arking,et al.  The influence of line shape and band structure on temperatures in planetary atmospheres , 1972 .

[26]  Fengshan Liu,et al.  An efficient approach for the implementation of the SNB based correlated-k method and its evaluation , 2004 .

[27]  Takeyoshi Tanaka,et al.  A Physically-Based Model for Urban Fire Spread , 2003 .

[28]  V. Babrauskas Heat Release In Fires , 1990 .

[29]  Ümit Özgür Köylü,et al.  Optical Properties of Overfire Soot in Buoyant Turbulent Diffusion Flames At Long Residence Times , 1994 .

[30]  Takeyoshi Tanaka,et al.  A Multi-layer Zone Model For Predicting Fire Behavior In A Single Room , 2003 .

[31]  雄二 長谷見 Fire safety science : proceedings of the Fifth international symposium , 1997 .

[32]  John F. Widmann,et al.  The effect of water sprays on fire fighter thermal imagers , 2004 .

[33]  Joseph Virgone,et al.  Computer simulation of glass temperatures in fire conditions , 1997 .

[34]  P. A. Rubini,et al.  CFD prediction of coupled radiation heat transfer and soot production in turbulent flames , 1996 .

[35]  A. Lettington,et al.  Quantitative analysis of remote gas temperatures and concentrations from their infrared emission spectra , 1995 .

[36]  Hisa Takeda Fire Resistance of Wood-Framed Exterior Walls: The Effect of an External Air Cavity and External Insulation , 2003 .

[37]  Fuchen Jia,et al.  The prediction of fire propagation in enclosure fires , 1997 .

[38]  N. Selçuk,et al.  RADIATIVE TRANSFER DIAGNOSTIC TECHNIQUE OF SOOTING FLAMES FROM EMISSION SPECTROSCOPY , 2004 .

[39]  Takao Wakamatsu,et al.  An Experimental Study On Glass Cracking And Fallout By Radiant Heat Exposure , 2000 .

[40]  Jennifer X. Wen,et al.  Investigation of a spectral formulation for radiative heat transfer in one-dimensional fires and combustion systems , 2000 .

[41]  Aerodynamic Characterization Of A Compartment Fire As A Function Of Its Behavior , 2003 .

[42]  M. Modest,et al.  Application of the full spectrum correlated-k distribution approach to modeling non-gray radiation in combustion gases , 2002 .

[43]  N. C. Markatos,et al.  Mathematical modelling of buoyancy-induced smoke flow in enclosures , 1982 .

[44]  Dominique Baillis,et al.  Thermal radiation properties of dispersed media: theoretical prediction and experimental characterization , 2000 .

[45]  P. Berdahl Pigments to Reflect the Infrared Radiation From Fire , 1995 .

[46]  D. K. Edwards,et al.  Molecular Gas Band Radiation , 1976 .

[47]  W. Malkmus INFRARED EMISSIVITY OF CARBON DIOXIDE , 1962 .

[48]  Gerard M. Faeth,et al.  Buoyant axisymmetric turbulent diffusion flames in still air , 1982 .

[49]  D. Nedelka,et al.  Fire protection: Water curtains , 1993 .

[50]  A. Balakrishnan,et al.  Thermal radiation by combustion gases , 1973 .

[51]  B. W. Webb,et al.  The Spectral Line-Based Weighted-Sum-of-Gray-Gases Model in Nonisothermal Nonhomogeneous Media , 1995 .

[52]  A. Korolchenko Aspects Of Fire Research Activities In Russia , 1997 .

[53]  Jean-Pierre Vantelon,et al.  Extinction Properties Of Smoke Mixtures , 2000 .

[54]  Zhenghua Yan,et al.  Three-dimensional computation of heat transfer from flames between vertical parallel walls , 1999 .

[55]  Jennifer X. Wen,et al.  Experimental study of water sprays for the attenuation of fire thermal radiation , 2001 .

[56]  George F. Carrier,et al.  Wind-aided firespread across arrays of discrete fuel elements. I, Theory , 1991 .

[57]  P. S. Cumber,et al.  Evaluation Of Participating Media Models For Fire Simulation , 2000 .

[58]  Peter R. Solomon,et al.  Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame : species concentrations and temperatures , 1991 .

[59]  S. K. S. Hassani,et al.  An Experimental Investigation Into The Behaviour of Glazing in Enclosure Fire , 1994 .

[60]  N. Afgan,et al.  Heat transfer in flames , 1974 .

[61]  J. Ris Fire radiation—A review , 1979 .

[62]  Ümit Özgür Köylü,et al.  Structure of Overfire Soot in Buoyant Turbulent Diffusion Flames at Long Residence Times , 1992 .

[63]  B. Porterie,et al.  A physically based model of the onset of crowning , 2003 .

[64]  M. Pinar Mengüç,et al.  IDENTIFICATION OF NON-HOMOGENEOUS SPHERICAL PARTICLES FROM THEIR SCATTERING MATRIX ELEMENTS , 1996 .

[65]  M. F. wolff,et al.  Wind-Aided Firespread Across Arrays of Discrete Fuel Elements. II. Experiment , 1990 .

[66]  C. B. Ludwig,et al.  Handbook of infrared radiation from combustion gases , 1973 .

[67]  G. Grant,et al.  Fire suppression by water sprays , 2000 .

[68]  Rodolphe Vaillon,et al.  FTIR low resolution emission spectrometry of a laboratory-scale diffusion flame: experimental set-up , 2002 .

[69]  Ö. Gülder,et al.  Band Lumping Strategy for Radiation Heat Transfer Calculations Using a Narrowband Model , 2000 .

[70]  G. H. Markstein,et al.  Wall-fire radiant emission—Part 2: Radiation and heat transfer from porous-metal wall burner flames , 1992 .

[71]  Jean-Louis Consalvi,et al.  METHOD FOR COMPUTING THE INTERACTION OF FIRE ENVIRONMENT AND INTERNAL SOLID REGIONS , 2003 .

[72]  F. A. Albini An Overview Of Research On Wildland Fire , 1997 .

[73]  J. L. De Ris,et al.  Similarity Of Turbulent Wall Fires , 2003 .

[74]  M. Pinar Mengüç,et al.  Erratum: Scattering matrix elements of fractal-like soot agglomerates , 1997 .

[75]  B. Porterie,et al.  A formal averaging procedure for radiation heat transfer in particulate media , 2002 .

[76]  Jennifer X. Wen,et al.  EVALUATION OF A FAST CORRELATED- k APPROACH FOR RADIATION CALCULATIONS IN COMBUSTION SYSTEMS , 2003 .

[77]  G. M. Faeth,et al.  Spectral extinction coefficients of soot aggregates from turbulent diffusion flames , 1996 .

[78]  M. Modest The weighted-sum-of-gray-gases model for arbitrary solution methods in radiative transfer , 1991 .

[79]  k-DISTRIBUTIONS AND WEIGHTED-SUM-OF-GRAY-GASES-A HYBRID MODEL , 1994 .

[80]  J. Garo,et al.  Addition of a water mist on a small-scale liquid pool fire: Effect on radiant heat transfer at the surface , 2002 .

[81]  Pierre Joulain,et al.  The behavior of pool fires: State of the art and new insights , 1998 .

[82]  Gerard M. Faeth,et al.  Radiative Properties of Flame-Generated Soot , 1993 .

[83]  Jay P. Gore,et al.  A Study of In Situ Specific Absorption Coefficients of Soot Particles in Laminar Flat Flames , 1993 .

[84]  C. E. Van Wagner,et al.  Conditions for the start and spread of crown fire , 1977 .

[85]  Zhenghua Yan,et al.  Fast, narrow-band computer model for radiation calculations , 1997 .

[86]  Z. Yan,et al.  CFD Simulation Of Upward Flame Spread Over Fuel Surface , 1997 .

[87]  J. Widmann CHARACTERIZATION OF A RESIDENTIAL FIRE SPRINKLER USING PHASE DOPPLER INTERFEROMETRY , 2002 .

[88]  Kevin B. McGrattan,et al.  Numerical Modeling Of Pool Fires Using Les And Finite Volume Method For Radiation , 2003 .

[89]  M. Pinar Mengüç,et al.  An investigation of dependent/independent scattering regimes using a discrete dipole approximation , 1996 .

[90]  Takashi Kashiwagi,et al.  Fire safety science : proceedings of the Fourth international symposium , 1994 .

[91]  G. H. Markstein,et al.  Wall-fire radiant emission. Part 1: Slot-burner flames, comparison with jet flames , 1991 .

[92]  S. Sugahara Building Firesafety Design Against A Large Earthquake - Based On The 1995 Kobe-hanshin Earthquake , 1997 .

[93]  Jay P. Gore,et al.  Spectral and Total Radiation Properties of Turbulent Hydrogen/Air Diffusion Flames , 1987 .

[94]  Jean-Louis Consalvi,et al.  MODELING THERMAL IMPACT OF WILDLAND FIRES ON STRUCTURES IN THE URBAN INTERFACE. PART 1: RADIATIVE AND CONVECTIVE COMPONENTS OF FLAMES REPRESENTATIVE OF VEGETATION FIRES , 2005 .

[95]  P. S. Cumber,et al.  Application of wide band radiation models to non-homogeneous combustion systems , 1998 .

[96]  Gerard M. Faeth,et al.  Radiative Heat Fluxes Near Turbulent Buoyant Methane Diffusion Flames , 1984 .

[97]  Influence of an external radiant flux on a 15-cm-diameter kerosene pool fire , 1991 .

[98]  S. Clausen,et al.  FTIR TRANSMISSION–EMISSION SPECTROSCOPY OF GASES AT HIGH TEMPERATURES: EXPERIMENTAL SET-UP AND ANALYTICAL PROCEDURES , 1999 .

[99]  Dominique Morvan,et al.  Firespread through fuel beds: Modeling of wind-aided fires and induced hydrodynamics , 2000 .

[100]  M. Pinar Mengüç,et al.  Determination of radiative properties of pulverized coal particles from experiments , 1994 .

[101]  Jianping Zhang,et al.  Evaluation Of The Correlated-K And Other Gas Radiation Models For Combustion Applications , 2003 .

[102]  J. Gore,et al.  RADIATION FROM TURBULENT DIFFUSION FLAMES , 1989 .

[103]  K. Hollands,et al.  Reordering the Absorption Coefficient Within the Wide Band for Predicting Gaseous Radiant Exchange , 1996 .

[104]  Vb Novozhilov,et al.  Computational fluid dynamics modeling of compartment fires , 2001 .

[105]  John F. Widmann,et al.  Phase Doppler interferometry measurements in water sprays produced by residential fire sprinklers , 2001 .

[106]  Philippe Rivière,et al.  A fictitious-gas-based absorption distribution function global model for radiative transfer in hot gases , 1999 .

[107]  M. Modest Radiative heat transfer , 1993 .

[108]  G. M. Makhviladze,et al.  Numerical studies and experimental observations of whirling flames , 2004 .

[109]  Uniformity of radiant heat fluxes in cone calorimeter , 2003 .

[110]  A. Grishin,et al.  Steady-state propagation of top crown forest fires , 1986 .

[111]  An instrument for characterization of the thermal and optical properties of charring polymeric materials , 1994 .

[112]  B. W. Webb,et al.  The Spectral-Line Weighted-Sum-of-Gray-Gases Model for H2O/CO2 Mixtures , 1995 .

[113]  Sønnik Clausen,et al.  FTIR emission spectroscopy methods and procedures for real time quantitative gas analysis in industrial environments , 2002 .

[114]  P. Joulain,et al.  Numerical Simulation Of Wind-Aided Turbulent Fires In A Ventilated Model Tunnel , 2003 .

[115]  William L. Grosshandler,et al.  The structure and radiation of an ethanol pool fire , 1987 .

[116]  H. R. Baum,et al.  Simulation Of Large Industrial Outdoor Fires , 2000 .

[117]  B. W. Webb,et al.  An absorption-line blackbody distribution function for efficient calculation of total gas radiative transfer , 1993 .

[118]  J. Garo,et al.  On The Determination Of Soot And Droplet Concentration And Velocity Fields During The Addition Of A Water Mist On A Liquid Pool Fire At Laboratory Scale , 2003 .

[119]  D. Morvan,et al.  Numerical Simulation Of The Propagation Of A Surface Fire Through A Mediterranean Shrub , 2003 .

[120]  Pierre Joulain,et al.  Thermal radiation from a small-scale pool fire: Influence of externally applied radiation , 1993 .

[121]  A. Soufiani,et al.  Correlated-k fictitious gas model for H2O infrared radiation in the Voigt regime , 1995 .

[122]  D. A. Smith,et al.  Major chemical species in buoyant turbulent diffusion flames , 1992 .

[123]  Vytenis Babrauskas,et al.  Development of the cone calorimeter—A bench-scale heat release rate apparatus based on oxygen consumption† , 1982 .