Mid-infrared (5–100 μm) reflectance spectra and optical constants of ten phyllosilicate minerals

We have derived the real and imaginary indices of refraction for 10 phyllosilicate minerals—montmorillonite, beidellite, nontronite, hectorite, saponite, illite, illite–smectite (60/40 interlayered) kaolinite, halloysite, and serpentine—from 100–2000 cm^(−1) (5–100 μm) at 2 cm^(−1) spectral sampling using classical Lorentz–Lorenz dispersion theory. We present the real and imaginary indices and the oscillator parameters with which they were modeled. Use of these optical constants will aid in the modeling of thermal infrared spectra of planets, asteroids, interplanetary and interstellar dust, and protoplanetary disks around nearby stars.

[1]  Robert K. Vincent,et al.  The behavior of spectral features in the infrared emission from particulate surfaces of various grain sizes , 1968 .

[2]  F. Madsen,et al.  Beidellite and Associated Clays from the Delamar Mine and Florida Mountain Area, Idaho , 1997 .

[3]  B. Hapke Combined theory of reflectance and emittance spectroscopy , 1995 .

[4]  James L. Gooding,et al.  Preterrestrial aqueous alteration of the Lafayette (SNC) meteorite , 1993 .

[5]  John F. Kerridge,et al.  Meteorites and the early solar system , 1988 .

[6]  M J Gaffey,et al.  Phyllosilicate Absorption Features in Main-Belt and Outer-Belt Asteroid Reflectance Spectra , 1989, Science.

[7]  E. Becklin,et al.  Resolution of the circumstellar disk of β Pictoris at 10 and 20 µm , 1988, Nature.

[8]  L. Lebofsky Asteroid 1 Ceres - Evidence for water of hydration , 1978 .

[9]  J. Hackwell,et al.  The Silicates in the Disk of beta Pictoris , 1993 .

[10]  B. Jones,et al.  Mixed-Layer Kerolite/Stevensite from the Amargosa Desert, Nevada , 1982 .

[11]  Patrick Morris,et al.  The mid-infrared spectrum of the zodiacal and exozodiacal light , 2003 .

[12]  R. J. P. Lyon,et al.  Evaluation of infrared spectrophotometry for compositional analysis of lunar and planetary soils. part ii- rough and powdered surfaces , 1963 .

[13]  J. Michalski,et al.  Emission spectroscopy of clay minerals and evidence for poorly crystalline aluminosilicates on Mars from Thermal Emission Spectrometer data , 2006 .

[14]  A. Brearley,et al.  Aqueous alteration of chondrules in the CM carbonaceous chondrite, Allan Hills 81002: implications for parent body alteration , 2001 .

[15]  Peter R. Buseck,et al.  MATRICES OF CARBONACEOUS CHONDRITE METEORITES , 1993 .

[16]  E. Anders,et al.  Meteorites and the Early Solar System , 1971 .

[17]  Adrian J. Brearley,et al.  The Action of Water , 2006 .

[18]  T. Rechner The uley graphite mine of South Australia , 2004 .

[19]  Robert B. Singer,et al.  Mars surface composition from reflectance spectroscopy: A summary , 1979 .

[20]  Francesco Paresce,et al.  The Structure of the Beta Pictoris Circumstellar Disk From Combined IRAS and Coronagraphic Observations , 1989 .

[21]  P. Buseck,et al.  Mineralogy of fine-grained rims in the alh 81002 cm chondrite , 2000 .

[22]  D. J. Barber,et al.  Origin of chondrule rims and interchondrule matrices in unequilibrated ordinary chondrites , 1989 .

[23]  D. A. Kleinman,et al.  Infrared Lattice Bands of Quartz , 1961 .

[24]  B. Hapke Bidirectional reflectance spectroscopy: 1. Theory , 1981 .

[25]  S. Richardson Alteration of mesostasis in chondrules and aggregates from three C2 carbonaceous chondrites , 1981 .

[26]  A. Emslie,et al.  Spectral reflectance and emittance of particulate materials. I - Theory. II - Application and results , 1973 .

[27]  P. Buseck,et al.  Phyllosilicates in the Mokoia CV carbonaceous chondrite: Evidence for aqueous alteration in an oxidizing environment , 1990 .

[28]  J. Pollack,et al.  Derivation of midinfrared (5-25 μm) optical constants of some silicates and palagonite , 1991 .

[29]  J. Gooding,et al.  Martian volatiles in shergottite EETA 79001 - New evidence from oxidized sulfur and sulfur-rich aluminosilicates , 1986 .

[30]  Yves Langevin,et al.  Ancient Crust, Aqueous Alteration, and Impact Melt Preserved in the Isidis Basin, Mars , 2006 .

[31]  R. Knacke,et al.  Optical constants of chlorite and serpentine between 2.5 and 50 μm , 1985 .

[32]  J. Pollack,et al.  Properties and effects of dust particles suspended in the Martian atmosphere , 1979 .

[33]  J. Bell,et al.  Mars surface mineralogy from Hubble Space Telescope imaging during 1994–1995: Observations, calibration, and initial results , 1997 .

[34]  E. Kreysa,et al.  Dust disks around Vega-type stars , 1991 .

[35]  M. Zolensky,et al.  Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites , 1993 .

[36]  W. Huff X-ray Diffraction and the Identification and Analysis of Clay Minerals , 1990 .

[37]  P. Roche,et al.  Mid-infrared spectroscopy of Beta Pictoris: constraints on the dust grain size , 1993 .

[38]  P. Buseck,et al.  Indicators of aqueous alteration in CM carbonaceous chondrites: Microtextures of a layered mineral containing Fe, S, O and Ni , 1985 .

[39]  J. Bowey,et al.  A mineralogy of extrasolar silicate dust from 10-µm spectra , 2002 .

[40]  B. Hapke Bidirectional reflectance spectroscopy , 1984 .

[41]  J. Bridges,et al.  Elemental redistribution in Tieschitz and the origin of white matrix , 1998 .

[42]  Carle M. Pieters,et al.  Optical effects of space weathering: The role of the finest fraction , 1993 .

[43]  B. Hapke A model of radiative and conductive energy transfer in planetary regoliths , 1996 .

[44]  C. Lisse,et al.  Comparison of the composition of the Tempel 1 ejecta to the dust in Comet C/Hale-Bopp 1995 O1 and YSO HD 100546 , 2007 .

[45]  J. Bandfield,et al.  Multiple emission angle surface–atmosphere separations of thermal emission spectrometer data , 2001 .

[46]  P. Buseck,et al.  Nanometer-scale measurements of iron oxidation states of cronstedtite from primitive meteorites , 2003 .

[47]  Philip R. Christensen,et al.  Surface mineralogy of Martian low-albedo regions from MGS-TES data: Implications for upper crustal evolution and surface alteration , 2007 .

[48]  R. Knacke,et al.  Detection of Silicates in the beta Pictoris Disk , 1991 .

[49]  A. Emslie,et al.  Composition of the Martian dust as derived by infrared spectroscopy from Mariner 9 , 1975 .

[50]  H. Shibai,et al.  Optical constants of hydrous silicates from 7 to 400 μm , 1990 .

[51]  Zoe Ann Brown,et al.  Ammonium in alunites , 1988 .

[52]  E. Palomba,et al.  Infrared reflectance spectroscopy of Martian analogues , 2000 .

[53]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.

[54]  John W. Salisbury,et al.  The effect of particle size and porosity on spectral contrast in the mid-infrared , 1985 .

[55]  R. Clark,et al.  Mars: Near‐infrared spectral reflectance of surface regions and compositional implications , 1982 .

[56]  Y. Ikeda Alteration of chondrules and matrices in the four Antarctic carbonaceous chondrites ALH-77307 (C3), Y-790123 (C2), Y-75293 (C2), and Y-74662 (C2) , 1983 .

[57]  V. Farmer The Infrared spectra of minerals , 1974 .

[58]  B. Hapke,et al.  Mineralogy of Martian atmospheric dust inferred from thermal infrared spectra of aerosols , 2005 .

[59]  A. Emslie,et al.  Spectral reflectance and emittance of particulate materials. 1: theory. , 1973, Applied optics.

[60]  M. Raven,et al.  Geology and Characterization of Two Hydrothermal Nontronites from Weathered Metamorphic Rocks at the Uley Graphite Mine, South Australia , 2000 .

[61]  John W. Salisbury,et al.  Thermal infrared directional emissivity of powdered quartz , 1995 .

[62]  G. Consolmagno,et al.  The nature of Low-Albedo asteroids from 3-μm multi-color photometry , 1989 .

[63]  J. Salisbury,et al.  Mars: Components of infrared spectra and the composition of the dust cloud , 1973 .

[64]  D. J. Barber,et al.  The Semarkona meteorite: First recorded occurrence of smectite in an ordinary chondrite, and its implications , 1987 .

[65]  Stephen M. Larson,et al.  Ferric Iron in Primitive Asteroids: A 0.43-μm Absorption Feature , 1993 .

[66]  Faith Vilas,et al.  Iron Alteration Minerals in the Visible and Near-Infrared Spectra of Low-Albedo Asteroids , 1994 .

[67]  Peter R. Buseck,et al.  Matrix mineralogy of the Orgueil CI carbonaceous chondrite , 1988 .

[68]  J. Greenberg,et al.  A&a Manuscript No. a Comet Dust Model for the Pictoris Disk , 2022 .

[69]  R. Clayton,et al.  The CR (Renazzo-type) carbonaceous chondrite group and its implications , 1993 .

[70]  Carl Sagan,et al.  Physical properties of the particles composing the Martian dust storm of 1971–1972 , 1977 .

[71]  P. Buseck,et al.  Fine-grained Rim Mineralogy of the Cold Bokkeveld CM Chondrite by Transmission Electron Microscopy , 2001 .

[72]  A. Emslie,et al.  Spectral reflectance and emittance of particulate materials. 2: application and results. , 1973, Applied optics.

[73]  C. Pieters,et al.  Remote geochemical analysis : elemental and mineralogical composition , 1993 .

[74]  Geoffrey C. Clayton,et al.  Application of modern radiative transfer tools to model laboratory quartz emissivity , 2005 .

[75]  J. Michalski,et al.  Mineralogical constraints on the high-silica martian surface component observed by TES , 2005 .

[76]  G. R. Gladstone,et al.  A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos , 1995 .

[77]  A. Rubin Mineralogy of meteorite groups , 1997 .

[78]  Jeffrey Edward Moersch,et al.  Thermal emission from particulate surfaces : a comparison of scattering models with measured spectra , 1995 .

[79]  S. Onari,et al.  Infrared lattice vibrations and dielectric dispersion inα−Fe2O3 , 1977 .

[80]  B. Hapke Bidirectional reflectance spectroscopy: 4. The extinction coefficient and the opposition effect , 1986 .

[81]  P. Buseck,et al.  Matrix mineralogy of the Lance CO3 carbonaceous chondrite - A transmission electron microscope study , 1990 .

[82]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[83]  L. Lebofsky Infrared reflectance spectra of asteroids - A search for water of hydration , 1980 .

[84]  A. Brearley Matrix and fine-grained rims in the unequilibrated CO3 chondrite, ALHA77307: Origins and evidence for diverse, primitive nebular dust components , 1993 .

[85]  R. H. Brown,et al.  Evidence for Ammonium-Bearing Minerals on Ceres , 1991, Science.

[86]  Harry Y. McSween,et al.  Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars , 2002, Nature.

[87]  Bruce Hapke,et al.  Applications of an Energy Transfer Model to Three Problems in Planetary Regoliths: The Solid-State Greenhouse, Thermal Beaming, and Emittance Spectra , 1996 .

[88]  J. Greenberg,et al.  A comet dust model for the beta Pictoris disk , 1998 .

[89]  V. Farmer The Layer Silicates , 1974 .

[90]  C. Pieters,et al.  Infrared Spectroscopic Analyses on the Nature of Water in Montmorillonite , 1994 .

[91]  Joshua L. Bandfield,et al.  Global mineral distributions on Mars , 2002 .

[92]  P. O. Lagage,et al.  Dust depletion in the inner disk of β Pictoris as a possible indicator of planets , 1994, Nature.

[93]  K. J. Meech,et al.  Spitzer Spectral Observations of the Deep Impact Ejecta , 2006, Science.

[94]  A. Brearley,et al.  Zoned chondrules in Semarkona: Evidence for high‐ and low‐temperature processing , 2002 .

[95]  D. J. Barber Phyllosilicates and other layer-structured materials in stony meteorites , 1985, Clay Minerals.

[96]  A. Brearley,et al.  Bleached chondrules: Evidence for widespread aqueous processes on the parent asteroids of ordinary chondrites , 2000 .

[97]  ’. R.HUTCHISON The Semarkona meteorite : First recorded occurrence of smectite in an ordinary chondrite , and its implications , 2002 .

[98]  J. Mustard,et al.  Effects of Hyperfine Particles on Reflectance Spectra from 0.3 to 25 μm , 1997 .

[99]  Dale P. Cruikshank,et al.  Thermal emission spectroscopy (5.2–38 μm) of three Trojan asteroids with the Spitzer Space Telescope: Detection of fine-grained silicates , 2006 .

[100]  J. Gooding Soil mineralogy and chemistry on Mars - Possible clues from salts and clays in SNC meteorites , 1992 .

[101]  Á. F. Cano,et al.  Baseline studies of the clay minerals society source clays: Chemical analyses of major elements , 2001 .

[102]  J. Salisbury,et al.  The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals , 1992 .

[103]  R. Vincent,et al.  Infrared reflectance from mat surfaces. , 1968, Applied optics.

[104]  I. Mackinnon Ordered mixed-layer structures in the Mighei carbonaceous chondrite matrix , 1982 .

[105]  Joshua L. Bandfield,et al.  A Global View of Martian Surface Compositions from MGS-TES , 2000 .

[106]  Harry Y. McSween,et al.  Meteorites and the early solar system II , 2006 .

[107]  S. Erard,et al.  Spatial Variations in the Spectral Properties of Bright Regions on Mars , 1993 .

[108]  L. Hartmann,et al.  The Truncated Disk of CoKu Tau/4 , 2004, astro-ph/0411522.

[109]  D. Bockelée-Morvan,et al.  Comment on "Comparison of the composition of the Tempel 1 ejecta to the dust in Comet C/Hale-Bopp 1995 O1 and YSO HD 100546" by C.M. Lisse, K.E. Kraemer, J.A. Nuth III, A. Li, D. Joswiak (2007. Icarus 187, 69-86) , 2008 .

[110]  Michael E. Zolensky,et al.  Aqueous alteration of the Nakhla meteorite , 1991 .