Coherence time of decoupled nuclear spins in silicon

We report NMR experiments using high-power rf decoupling techniques to show that a 29 Si nuclear spin in a solid silicon crystal at room temperature can preserve quantum phase for 10 9 precessional periods. The coherence times we report are more than four orders of magnitude longer than for any other observed solidstate qubit. We also examine coherence times using magic-angle-spinning techniques and in isotopically altered samples. In high-quality crystals, coherence times are limited by residual dipolar couplings and can be further improved by isotopic depletion. In defect-heavy samples, we provide evidence for decoherence limited by a noise process unrelated to the dipolar coupling. The nonexponential character of these data is compared to a theoretical model for decoherence due to the same charge trapping mechanisms responsible for 1 / f noise. These results provide insight into proposals for solid-state nuclear-spin-based quantum memories and quantum computers based on silicon.

[1]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[2]  O. N. Godisov,et al.  High Purity Isotopically Enriched 29Si and 30Si Single Crystals: Isotope Separation, Purification, and Growth , 2003 .

[3]  S. Sasaki,et al.  29Si Nuclear-Spin Decoherence Process Directly Observed by Multiple Spin-Echoes for Pure and Carrier-Less Silicon , 2003, cond-mat/0310166.

[4]  S. Barrett,et al.  Anomalies in the NMR of silicon: Unexpected spin echoes in a dilute dipolar solid , 2003, cond-mat/0308584.

[5]  K. Itoh,et al.  Double and single peaks in nuclear magnetic resonance spectra of natural and 29Si-enriched single-crystal silicon , 2003 .

[6]  Roberto Ramos,et al.  Entangled Macroscopic Quantum States in Two Superconducting Qubits , 2003, Science.

[7]  D G Cory,et al.  Pulse error compensating symmetric magic-echo trains. , 2003, Journal of magnetic resonance.

[8]  D. Cory,et al.  Encoding multiple quantum coherences in non-commuting bases , 2003, quant-ph/0408167.

[9]  Yasunobu Nakamura,et al.  Coherent Quantum Dynamics of a Superconducting Flux Qubit , 2003, Science.

[10]  Jacob M. Taylor,et al.  Long-lived memory for mesoscopic quantum bits. , 2003, Physical review letters.

[11]  Yu. A. Pashkin,et al.  Quantum oscillations in two coupled charge qubits , 2002, Nature.

[12]  S. Sarma,et al.  Theory of nuclear-induced spectral diffusion: Spin decoherence of phosphorus donors in Si and GaAs quantum dots , 2002, cond-mat/0211567.

[13]  Siyuan Han,et al.  Coherent Temporal Oscillations of Macroscopic Quantum States in a Josephson Junction , 2002, Science.

[14]  M. Devoret,et al.  Manipulating the Quantum State of an Electrical Circuit , 2002, Science.

[15]  G. Falci,et al.  Decoherence and 1/f noise in Josephson qubits. , 2002, Physical review letters.

[16]  Y. Yamamoto,et al.  All-silicon quantum computer. , 2001, Physical review letters.

[17]  K. Itoh,et al.  Growth and Characterization of the Isotopically Enriched 28Si Bulk Single Crystal , 1999 .

[18]  Orlando,et al.  Josephson Persistent-Current Qubit , 2022 .

[19]  Kang L. Wang,et al.  Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures , 1999, quant-ph/9905096.

[20]  D. Leung,et al.  Efficient implementation of selective recoupling in heteronuclear spin systems using hadamard matrices , 1999, quant-ph/9904100.

[21]  Y. Makhlin,et al.  Josephson-junction qubits with controlled couplings , 1998, Nature.

[22]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[23]  Timothy F. Havel,et al.  Ensemble quantum computing by NMR spectroscopy , 1997, Proc. Natl. Acad. Sci. USA.

[24]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[25]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[26]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[27]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. , 1993 .

[28]  D. Cory,et al.  Time-suspension multiple-pulse sequences: applications to solid-state imaging , 1990 .

[29]  U. Haeberlen M. Mehring: Principles of High Resolution NMR in Solids, Springer Verlag Berlin, Heidelberg, New York 1983. 342 Seiten, Preis: DM 172,— , 1983 .

[30]  P. J. Restle,et al.  Hall effect, anisotropy, and temperature-dependence measurements of1fnoise in silicon on sapphire , 1983 .

[31]  Michael Mehring,et al.  Principles of high-resolution NMR in solids , 1982 .

[32]  U. Haeberlen,et al.  Design and construction of a high homogeneity rf coil for solid-state multiple-pulse NMR , 1982 .

[33]  M. Weissman,et al.  1/f noise in silicon wafers , 1982 .

[34]  R. R. Ernst,et al.  Low-power multipulse line narrowing in solid-state NMR , 1981 .

[35]  Ray Freeman,et al.  Compensation for Pulse Imperfections in NMR Spin-Echo Experiments , 1981 .

[36]  J. Waugh,et al.  Quasistationary magnetization in pulsed spin-locking experiments in dipolar solids , 1980 .

[37]  Pulak Dutta,et al.  Energy Scales for Noise Processes in Metals , 1979 .

[38]  J. Waugh,et al.  Resonance Offset Effects in Multiple‐Pulse NMR Experiments , 1971 .

[39]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[40]  U. Haeberlen,et al.  Coherent Averaging Effects in Magnetic Resonance , 1968 .

[41]  R. Norberg,et al.  Pulsed Nuclear Magnetic Resonance in Rotating Solids , 1967 .

[42]  J. S. Waugh,et al.  Multiple Spin Echoes and Spin Locking in Solids , 1966 .

[43]  H. Carr,et al.  The Principles of Nuclear Magnetism , 1961 .

[44]  S. Meiboom,et al.  Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times , 1958 .

[45]  R. Shulman,et al.  NUCLEAR MAGNETIC RESONANCE OF Si$sup 29$ IN n-AND p-TYPE SILICON , 1956 .

[46]  Brian Cowan,et al.  Nuclear magnetic resonance and relaxation , 1997 .

[47]  Peter Mansfield,et al.  Symmetrized Multipulse Nuclear-Magnetic-Resonance Experiments in Solids: Measurement of the Chemical-Shift Shielding Tensor in Some Compounds , 1973 .

[48]  B. Sapoval,et al.  Desaimantation d'un systeme de spins nucleaires dilues relaxation spin-reseau dans le silicium tres pur , 1966 .