Fluorescence Behaviour of Highly Concentrated Rhodamine 6G Solutions

The fluorescence quantum distributions E(X) and fluorescence quantum efficiencies qF of rhodamine 6G in methanol and in water are measured for various concentrations up to the solubility limit. The fluorescence spectra are separated in monomer and dimer (ground-state dimer and closely spaced pair) contributions. The stimulated emission cross sections for the monomers and the dimers are resolved.

[1]  S. Dähne,et al.  Determination of the fluorescence decay time of the I aggregates of pseudoisocyanine , 1977 .

[2]  K. Mielenz,et al.  Polarization Effects on Fluorescence Measurements. , 1975, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[3]  I. Ketskemety,et al.  Influence of Secondary Fluorescence on the Emission Spectra of Luminescent Solutions , 1956 .

[4]  Joseph H. Eberly,et al.  Organic Dye Laser Threshold , 1971 .

[5]  D. Webb,et al.  Photoluminescence of solutions , 1969 .

[6]  Johannes Falnes,et al.  Fluorescence lifetime studies of Rhodamine 6G in methanol , 1977 .

[7]  K. Berndt,et al.  Picosecond phase fluorometry by mode-locked cw lasers , 1982 .

[8]  Th. Förster Fluoreszenz organischer Verbindungen , 1951 .

[9]  James B. Clark,et al.  Population and rotational kinetics of the rhodamine B monomer and dimer: Picosecond transient spectrometry , 1982 .

[10]  K. Nelson,et al.  Electronic excited state energy transfer, trapping by dimers and fluorescence quenching in concentrated dye solutions: Picosecond transient grating exp , 1981 .

[11]  T. Kajiwara,et al.  Effect of dimer formation on the electronic absorption and emission spectra of ionic dyes. Rhodamines and other common dyes , 1974 .

[12]  W. Kaiser,et al.  On the aggregates of pseudoisocy anine chloride (PIC) , 1982 .

[13]  W. Simpson,et al.  Electronic Spectra of Pyridocyanine Dyes with Assignments of Transitions1 , 1957 .

[14]  F. Dörr Zur Spektroskopie mit polarisiertem Licht , 1966 .

[15]  J. Steinfeld,et al.  Aggregation of equilibriums of xanthene dyes , 1972 .

[16]  P. Hammond Self‐absorption of molecular fluorescence, the design of equipment for measurement of fluorescence decay, and the decay times of some laser dyesa) , 1979 .

[17]  Alfons Penzkofer,et al.  Fluorescence quenching of rhodamine 6G in methanol at high concentration , 1986 .

[18]  A. Penzkofer,et al.  Absorption behaviour of methanolic rhodamine 6G solutions at high concentration , 1986 .

[19]  L. D. Maeyer,et al.  Picosecond rotational diffusion by differential single-photon fluorescence spectroscopy , 1981 .

[20]  S. J. Strickler,et al.  Relationship between Absorption Intensity and Fluorescence Lifetime of Molecules , 1962 .

[21]  R. Alfano,et al.  Effect of soap on the fluorescent lifetime and quantum yield of rhodamine 6G in water , 1973 .

[22]  A. Penzkofer Saturable absorbers with concentration-dependent absorption recovery time , 1986 .

[23]  J. B. Birks,et al.  The relations between the fluorescence and absorption properties of organic molecules , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[24]  H. Eichler,et al.  Measurement of orientational relaxation times of rhodamine 6G with a streak camera , 1979 .