Intersection Numbers For Subspace Designs

Intersection numbers for subspace designs are introduced and q-analogs of the Mendelsohn and Kohler equations are given. As an application, we are able to determine the intersection structure of a putative q-analog of the Fano plane for any prime power q. It is shown that its existence implies the existence of a 2-(7, 3, q^4)_q subspace design. Furthermore, several simplified or alternative proofs concerning intersection numbers of ordinary block designs are discussed.

[1]  Hiroshi Suzuki 2-Designs overGF(q) , 1992, Graphs Comb..

[2]  Egmont Köhler,et al.  Allgemeine schnittzahlen in t-designs , 1989, Discret. Math..

[3]  Philippe Delsarte,et al.  Association Schemes and t-Designs in Regular Semilattices , 1976, J. Comb. Theory A.

[4]  Henry Cohn,et al.  Projective Geometry over F1 and the , 2016 .

[5]  Tran van Trung,et al.  High order intersection numbers of t-designs , 1996 .

[6]  Richard M. Wilson,et al.  On $t$-designs , 1975 .

[7]  Michael Braun,et al.  Systematic Construction of q-Analogs of t−(v,k,λ)-Designs , 2005, Des. Codes Cryptogr..

[8]  Arman Fazeli,et al.  Nontrivial t-designs over finite fields exist for all t , 2013, Electron. Colloquium Comput. Complex..

[9]  A. Rosa,et al.  2-( v , k , λ) Designs of Small Order , 2006 .

[10]  Hiroshi Suzuki 2-designs overGF(2m) , 1990, Graphs Comb..

[11]  George Lusztig Gaussian Binomial Coefficients at Roots of 1 , 2010 .

[12]  Hiroshi Suzuki,et al.  On the Inequalities of t-Designs over a Finite Field , 1990, Eur. J. Comb..

[13]  G. Rota,et al.  On the Foundations of Combinatorial Theory IV Finite Vector Spaces and Eulerian Generating Functions , 1970 .

[14]  Morgan Ward,et al.  A Calculus of Sequences , 1936 .

[15]  Robert D. Fray Congruence properties of ordinary and $q$-binomial coefficients , 1967 .

[16]  P. Östergård,et al.  EXISTENCE OF $q$ -ANALOGS OF STEINER SYSTEMS , 2013, Forum of Mathematics, Pi.

[17]  N. M. Singhi,et al.  q-Analogues of t-designs and their existence , 1989 .

[18]  Cornelis de Vroedt Über einen Satz von Köhler , 1991, Discret. Math..

[19]  Anton Betten Schnittzahlen von Designs , 2000 .

[20]  Michel Dehon,et al.  Non-existence d'un 3-design de parameters λ = 2, k = 5 et ν = 11 , 1976, Discret. Math..

[21]  F. H. Jackson q-Difference Equations , 1910 .

[22]  Simon Thomas,et al.  Designs over finite fields , 1987 .

[23]  Reinhard Laue,et al.  Derived and residual subspace designs , 2015, Adv. Math. Commun..

[24]  H. Hanani,et al.  On steiner systems , 1964 .

[25]  Reinhard Laue,et al.  t -Designs with t ≥ 3 , 2006 .

[26]  P. J. Cameron Combinatorics: Generalisation of Fisher's inequality to fields with more than one element , 1974 .