Intersection Numbers For Subspace Designs
暂无分享,去创建一个
[1] Hiroshi Suzuki. 2-Designs overGF(q) , 1992, Graphs Comb..
[2] Egmont Köhler,et al. Allgemeine schnittzahlen in t-designs , 1989, Discret. Math..
[3] Philippe Delsarte,et al. Association Schemes and t-Designs in Regular Semilattices , 1976, J. Comb. Theory A.
[4] Henry Cohn,et al. Projective Geometry over F1 and the , 2016 .
[5] Tran van Trung,et al. High order intersection numbers of t-designs , 1996 .
[6] Richard M. Wilson,et al. On $t$-designs , 1975 .
[7] Michael Braun,et al. Systematic Construction of q-Analogs of t−(v,k,λ)-Designs , 2005, Des. Codes Cryptogr..
[8] Arman Fazeli,et al. Nontrivial t-designs over finite fields exist for all t , 2013, Electron. Colloquium Comput. Complex..
[9] A. Rosa,et al. 2-( v , k , λ) Designs of Small Order , 2006 .
[10] Hiroshi Suzuki. 2-designs overGF(2m) , 1990, Graphs Comb..
[11] George Lusztig. Gaussian Binomial Coefficients at Roots of 1 , 2010 .
[12] Hiroshi Suzuki,et al. On the Inequalities of t-Designs over a Finite Field , 1990, Eur. J. Comb..
[13] G. Rota,et al. On the Foundations of Combinatorial Theory IV Finite Vector Spaces and Eulerian Generating Functions , 1970 .
[14] Morgan Ward,et al. A Calculus of Sequences , 1936 .
[15] Robert D. Fray. Congruence properties of ordinary and $q$-binomial coefficients , 1967 .
[16] P. Östergård,et al. EXISTENCE OF $q$ -ANALOGS OF STEINER SYSTEMS , 2013, Forum of Mathematics, Pi.
[17] N. M. Singhi,et al. q-Analogues of t-designs and their existence , 1989 .
[18] Cornelis de Vroedt. Über einen Satz von Köhler , 1991, Discret. Math..
[19] Anton Betten. Schnittzahlen von Designs , 2000 .
[20] Michel Dehon,et al. Non-existence d'un 3-design de parameters λ = 2, k = 5 et ν = 11 , 1976, Discret. Math..
[21] F. H. Jackson. q-Difference Equations , 1910 .
[22] Simon Thomas,et al. Designs over finite fields , 1987 .
[23] Reinhard Laue,et al. Derived and residual subspace designs , 2015, Adv. Math. Commun..
[24] H. Hanani,et al. On steiner systems , 1964 .
[25] Reinhard Laue,et al. t -Designs with t ≥ 3 , 2006 .
[26] P. J. Cameron. Combinatorics: Generalisation of Fisher's inequality to fields with more than one element , 1974 .