Extension of the QuickFF force field protocol for an improved accuracy of structural, vibrational, mechanical and thermal properties of metal–organic frameworks

QuickFF was originally launched in 2015 to derive accurate force fields for isolated and complex molecular systems in a quick and easy way. Apart from the general applicability, the functionality was especially tested for metal–organic frameworks (MOFs), a class of hybrid materials consisting of organic and inorganic building blocks. Herein, we launch a new release of the QuickFF protocol which includes new major features to predict structural, vibrational, mechanical and thermal properties with greater accuracy, without compromising its robustness and transparent workflow. First, the ab initio data necessary for the fitting procedure may now also be derived from periodic models for the molecular system, as opposed to the earlier cluster‐based models. This is essential for an accurate description of MOFs with one‐dimensional metal‐oxide chains. Second, cross terms that couple internal coordinates (ICs) and anharmonic contributions for bond and bend terms are implemented. These features are essential for a proper description of vibrational and thermal properties. Third, the fitting scheme was modified to improve robustness and accuracy. The new features are tested on MIL‐53(Al), MOF‐5, CAU‐13 and NOTT‐300. As expected, periodic input data are proven to be essential for a correct description of structural, vibrational and thermodynamic properties of MIL‐53(Al). Bulk moduli and thermal expansion coefficients of MOF‐5 are very accurately reproduced by static and dynamic simulations using the newly derived force fields which include cross terms and anharmonic corrections. For the flexible materials CAU‐13 and NOTT‐300, the transition pressure is accurately predicted provided cross terms are taken into account. © 2018 Wiley Periodicals, Inc.

[1]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[2]  E. Cockayne Thermodynamics of the Flexible Metal-Organic Framework Material MIL-53(Cr) From First Principles. , 2017, The journal of physical chemistry. C, Nanomaterials and interfaces.

[3]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[4]  Peter G. Boyd,et al.  Force-Field Prediction of Materials Properties in Metal-Organic Frameworks , 2016, The journal of physical chemistry letters.

[5]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[6]  T. K. Roy,et al.  MOF‐FF – A flexible first‐principles derived force field for metal‐organic frameworks , 2013 .

[7]  T. Verstraelen,et al.  Ab Initio Parametrized Force Field for the Flexible Metal-Organic Framework MIL-53(Al). , 2012, Journal of chemical theory and computation.

[8]  J. Simpson,et al.  Origin of the Exceptional Negative Thermal Expansion in Metal-Organic Framework-5 Zn 4 O(1,4-benzenedicarboxylate) 3 , 2008 .

[9]  S. Rogge,et al.  Exploring the Flexibility of MIL-47(V)-Type Materials Using Force Field Molecular Dynamics Simulations , 2016, The journal of physical chemistry. C, Nanomaterials and interfaces.

[10]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[11]  S. Kaskel,et al.  Flexible metal-organic frameworks. , 2014, Chemical Society reviews.

[12]  Krista S. Walton,et al.  Exceptional negative thermal expansion in isoreticular metal-organic frameworks. , 2007, Angewandte Chemie.

[13]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[14]  S. Grimme A General Quantum Mechanically Derived Force Field (QMDFF) for Molecules and Condensed Phase Simulations. , 2014, Journal of chemical theory and computation.

[15]  C. Serre,et al.  Mechanical properties of a gallium fumarate metal–organic framework: a joint experimental-modelling exploration , 2017 .

[16]  Anthony K. Cheetham,et al.  Mechanical properties of hybrid inorganic-organic framework materials: establishing fundamental structure-property relationships. , 2011, Chemical Society reviews.

[17]  Michael J. Frisch,et al.  Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets , 1984 .

[18]  T. Verstraelen,et al.  A Comparison of Barostats for the Mechanical Characterization of Metal-Organic Frameworks. , 2015, Journal of chemical theory and computation.

[19]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[20]  Kurt Kremer,et al.  Computer Simulations of Soft Matter: Linking the Scales , 2014, Entropy.

[21]  A. J. Blake,et al.  Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host. , 2012, Nature chemistry.

[22]  Saeed Amirjalayer,et al.  Molecular dynamics simulation of benzene diffusion in MOF-5: importance of lattice dynamics. , 2007, Angewandte Chemie.

[23]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[24]  Florian Müller-Plathe,et al.  Coarse-grained modeling for macromolecular chemistry. , 2012, Topics in current chemistry.

[25]  T. Verstraelen,et al.  Methane Adsorption in Zr-Based MOFs: Comparison and Critical Evaluation of Force Fields , 2017, The journal of physical chemistry. C, Nanomaterials and interfaces.

[26]  B. Smit,et al.  On the Thermodynamics of Framework Breathing: A Free Energy Model for Gas Adsorption in MIL-53 , 2013 .

[27]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[28]  A. Ghoufi,et al.  Adsorption of light hydrocarbons in the flexible MIL-53(Cr) and rigid MIL-47(V) metal-organic frameworks: a combination of molecular simulations and microcalorimetry/gravimetry measurements. , 2010, Physical chemistry chemical physics : PCCP.

[29]  C. Serre,et al.  Mechanical energy storage performance of an aluminum fumarate metal–organic framework† †Electronic supplementary information (ESI) available: Experimental procedures, X-ray diffraction, and molecular simulation. See DOI: 10.1039/c5sc02794b , 2015, Chemical science.

[30]  C. Kepert,et al.  Elucidating Negative Thermal Expansion in MOF-5 , 2010 .

[31]  F. Corà,et al.  Sorption-Induced Breathing in the Flexible Metal Organic Framework CrMIL-53: Force-Field Simulations and Electronic Structure Analysis , 2009 .

[32]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[33]  T. Heine,et al.  Extension of the Universal Force Field to Metal-Organic Frameworks. , 2014, Journal of chemical theory and computation.

[34]  Ming-Jing Hwang,et al.  Derivation of class II force fields. I. Methodology and quantum force field for the alkyl functional group and alkane molecules , 1994, J. Comput. Chem..

[35]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 1 , 1989 .

[36]  R. Schmid,et al.  Hypothetical 3D-periodic covalent organic frameworks: exploring the possibilities by a first principles derived force field , 2013 .

[37]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[38]  R. Schmid,et al.  Model Study of Thermoresponsive Behavior of Metal–Organic Frameworks Modulated by Linker Functionalization , 2016 .

[39]  Maciej Haranczyk,et al.  Computation-Ready, Experimental Metal–Organic Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals , 2014 .

[40]  Pedro Alexandrino Fernandes,et al.  General performance of density functionals. , 2007, The journal of physical chemistry. A.

[41]  Peter G. Boyd,et al.  Computational development of the nanoporous materials genome , 2017 .

[42]  F. Paesani,et al.  Molecular-level characterization of the breathing behavior of the jungle-gym-type DMOF-1 metal-organic framework. , 2012, Journal of the American Chemical Society.

[43]  François-Xavier Coudert,et al.  Recent advances in the computational chemistry of soft porous crystals. , 2017, Chemical communications.

[44]  V. V. Speybroeck,et al.  The Monomer Electron Density Force Field (MEDFF): A Physically Inspired Model for Noncovalent Interactions. , 2017, Journal of chemical theory and computation.

[45]  G. Kearley,et al.  Scrutinizing negative thermal expansion in MOF-5 by scattering techniques and ab initio calculations. , 2013, Dalton transactions.

[46]  A. Walsh,et al.  Transferable Force Field for Metal–Organic Frameworks from First-Principles: BTW-FF , 2014, Journal of chemical theory and computation.

[47]  T. Verstraelen,et al.  Thermodynamic Insight in the High-Pressure Behavior of UiO-66: Effect of Linker Defects and Linker Expansion , 2016, Chemistry of materials : a publication of the American Chemical Society.

[48]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[49]  D. Osguthorpe,et al.  Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase‐trimethoprim, a drug‐receptor system , 1988, Proteins.

[50]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[51]  R. Schmid,et al.  Coarse graining of force fields for metal-organic frameworks. , 2016, Dalton transactions.

[52]  A. Ghoufi,et al.  Molecular dynamics simulations of breathing MOFs: structural transformations of MIL-53(Cr) upon thermal activation and CO2 adsorption. , 2008, Angewandte Chemie.

[53]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[54]  R. Schmid,et al.  Dioxygen binding to Fe-MOF-74: microscopic insights from periodic QM/MM calculations , 2016 .

[55]  C. Serre,et al.  Diffusion of Binary CO2/CH4 Mixtures in the MIL-47(V) and MIL-53(Cr) Metal–Organic Framework Type Solids: A Combination of Neutron Scattering Measurements and Molecular Dynamics Simulations , 2013 .

[56]  A. D. McLean,et al.  Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18 , 1980 .

[57]  J. Soler,et al.  Flexibility in a metal-organic framework material controlled by weak dispersion forces: the bistability of MIL-53(Al). , 2010, Angewandte Chemie.

[58]  Krista S. Walton,et al.  Flexible Force Field Parameterization through Fitting on the Ab Initio-Derived Elastic Tensor , 2017, Journal of chemical theory and computation.

[59]  Lennox E. Iton,et al.  An assessment of density functional methods for studying molecular adsorption in cluster models of zeolites , 1998 .

[60]  Aron Walsh,et al.  A general forcefield for accurate phonon properties of metal-organic frameworks. , 2016, Physical chemistry chemical physics : PCCP.

[61]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[62]  François-Xavier Coudert,et al.  Prediction of flexibility of metal-organic frameworks CAU-13 and NOTT-300 by first principles molecular simulations. , 2014, Chemical communications.

[63]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[64]  D. Sholl,et al.  DFT-Derived Force Fields for Modeling Hydrocarbon Adsorption in MIL-47(V). , 2015, Langmuir : the ACS journal of surfaces and colloids.

[65]  R. Schmid,et al.  Multiscale Modeling of the HKUST-1/Poly(vinyl alcohol) Interface: From an Atomistic to a Coarse Graining Approach , 2017 .

[66]  C. Serre,et al.  The new age of MOFs and of their porous-related solids. , 2017, Chemical Society reviews.

[67]  G. Voth Coarse-Graining of Condensed Phase and Biomolecular Systems , 2008 .

[68]  S. Rogge,et al.  Semi-analytical mean-field model for predicting breathing in metal–organic frameworks , 2015 .

[69]  P. Guerrier,et al.  Aluminum-1,4-cyclohexanedicarboxylates: high-throughput and temperature-dependent in situ EDXRD studies. , 2013, Inorganic chemistry.

[70]  Rochus Schmid,et al.  Systematic first principles parameterization of force fields for metal-organic frameworks using a genetic algorithm approach. , 2009, The journal of physical chemistry. B.

[71]  Rochus Schmid,et al.  Ab initio parametrized MM3 force field for the metal‐organic framework MOF‐5 , 2007, J. Comput. Chem..

[72]  Louis Vanduyfhuys,et al.  QuickFF: A program for a quick and easy derivation of force fields for metal‐organic frameworks from ab initio input , 2015, J. Comput. Chem..

[73]  Maciej Haranczyk,et al.  The Influence of Intrinsic Framework Flexibility on Adsorption in Nanoporous Materials , 2017, Journal of the American Chemical Society.